# Appendix $A^*$

Noise Assessment

# CALTEX KURNELL ASBESTOS CONTAMINATED SOIL (ACS) MANAGEMENT PROJECT CONSTRUCTION NOISE ASSESSMENT

REPORT NO. 16284 VERSION C

SEPTEMBER 2016

**PREPARED FOR** 

AECOM SERVICES PTY LTD LEVEL 21, 420 GEORGE STREET SYDNEY NSW 2000



# DOCUMENT CONTROL

| Version | Status          | Date              | Prepared By   | Reviewed By |
|---------|-----------------|-------------------|---------------|-------------|
| A       | Unchecked Draft | 16 September 2016 | Sean Flaherty | -           |
| А       | Final           | 26 September 2016 | Sean Flaherty | Rob Bullen  |
| В       | Final           | 27 September 2016 | Sean Flaherty | Rob Bullen  |
| С       | Final           | 29 September 2016 | Sean Flaherty | Rob Bullen  |

## Note

All materials specified by Wilkinson Murray Pty Limited have been selected solely on the basis of acoustic performance. Any other properties of these materials, such as fire rating, chemical properties etc. should be checked with the suppliers or other specialised bodies for fitness for a given purpose. The information contained in this document produced by Wilkinson Murray is solely for the use of the client identified on the front page of this report. Our client becomes the owner of this document upon full payment of our **Tax Invoice** for its provision. This document must not be used for any purposes other than those of the document's owner. Wilkinson Murray undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.

## **Quality Assurance**

We are committed to and have implemented AS/NZS ISO 9001:2008 "Quality Management Systems – Requirements". This management system has been externally certified and Licence No. QEC 13457 has been issued.



#### AAAC

This firm is a member firm of the Association of Australian Acoustical Consultants and the work here reported has been carried out in accordance with the terms of that membership.

## Celebrating 50 Years in 2012

Wilkinson Murray is an independent firm established in 1962, originally as Carr & Wilkinson. In 1976 Barry Murray joined founding partner Roger Wilkinson and the firm adopted the name which remains today. From a successful operation in Australia, Wilkinson Murray expanded its reach into Asia by opening a Hong Kong office early in 2006. 2010 saw the introduction of our Queensland office and 2011 the introduction of our Orange office to service a growing client base in these regions. From these offices, Wilkinson Murray services the entire Asia-Pacific region.



Wilkinson Murray Pty Limited · ABN 39 139 833 060 Level 4, 272 Pacific Highway, Crows Nest NSW 2065, Australia • Offices in Orange, Qld & Hong Kong t +61 2 9437 4611 • f +61 2 9437 4393 • e acoustics@wilkinsonmurray.com.au • w www.wilkinsonmurray.com.au

# ACOUSTICS AND AIR

# TABLE OF CONTENTS

# Page

# **GLOSSARY OF ACOUSTIC TERMS**

| 1 | INTRO  | DUCTION                                   | 1 |
|---|--------|-------------------------------------------|---|
| 2 | ASC CO | NSTRUCTION PROGRAM                        | 3 |
|   | 2.1    | Construction Hours                        | 4 |
| 3 | NOISE  | SENSITIVE RECEPTORS                       | 4 |
| 4 | NOISE  | CRITERIA                                  | 5 |
|   | 4.1    | Existing Development Consent Noise Limits | 5 |
| 5 | CONST  | RUCTION NOISE ASSESSMENT                  | 5 |
| 6 | OFF-SI | TE TRAFFIC NOISE ASSESSMENT               | 7 |
|   | 6.1    | Traffic Noise Criteria                    | 7 |
|   | 6.2    | Traffic Noise Assessment                  | 8 |
| 7 | CONCL  | USION                                     | 8 |



# GLOSSARY OF ACOUSTIC TERMS

Most environments are affected by environmental noise which continuously varies, largely as a result of road traffic. To describe the overall noise environment, a number of noise descriptors have been developed and these involve statistical and other analysis of the varying noise over sampling periods, typically taken as 15 minutes. These descriptors, which are demonstrated in the graph below, are here defined.

**Maximum Noise Level (L**<sub>Amax</sub>) – The maximum noise level over a sample period is the maximum level, measured on fast response, during the sample period.

 $L_{A1}$  – The  $L_{A1}$  level is the noise level which is exceeded for 1% of the sample period. During the sample period, the noise level is below the  $L_{A1}$  level for 99% of the time.

 $L_{A10}$  – The  $L_{A10}$  level is the noise level which is exceeded for 10% of the sample period. During the sample period, the noise level is below the  $L_{A10}$  level for 90% of the time. The  $L_{A10}$  is a common noise descriptor for environmental noise and road traffic noise.

 $L_{A90}$  – The  $L_{A90}$  level is the noise level which is exceeded for 90% of the sample period. During the sample period, the noise level is below the  $L_{A90}$  level for 10% of the time. This measure is commonly referred to as the background noise level.

 $L_{Aeq}$  – The equivalent continuous sound level ( $L_{Aeq}$ ) is the energy average of the varying noise over the sample period and is equivalent to the level of a constant noise which contains the same energy as the varying noise environment. This measure is also a common measure of environmental noise and road traffic noise.

**ABL** – The Assessment Background Level is the single figure background level representing each assessment period (daytime, evening and night time) for each day. It is determined by calculating the  $10^{th}$  percentile (lowest  $10^{th}$  percent) background level (L<sub>A90</sub>) for each period.

**RBL** – The Rating Background Level for each period is the median value of the ABL values for the period over all of the days measured. There is therefore an RBL value for each period – daytime, evening and night time.



## **Typical Graph of Sound Pressure Level vs Time**

WILKINSON ((MURRAY

# **1** INTRODUCTION

Caltex Australia Petroleum Pty Ltd (hereafter referred to as Caltex) initiated the Asbestos Contaminated Soil (ACS) Management Project at its Kurnell site in order to resolve an ongoing hygiene issue with the pipeways. The ASC Management works (the ACS Modification works) would run broadly in parallel with the approved demolition works on site and Caltex seeks to modify its existing approval for this purpose.

Wilkinson Murray Pty Limited (WM) has previously undertaken environmental noise assessments on behalf of Caltex in relation to the on-site demolition works. WM has now been engaged to provide a desktop noise assessment for the coinciding ACS Modification works.

The ACS Modification works would broadly involve the following activities within the ACS Modification area:

- Construction of the ACS containment cell base and leachate collection system in the proposed cell location;
- Installation of ground water monitoring wells down gradient of the cell location;
- Excavation and transportation of ACSs that fall within general or restricted solid waste to the cell location;
- Excavation and transportation of ACSs that fall within hazardous solid waste to biopile location;
- Operation of the biopile remediation system to reduce the ACS hazardous solid waste to ACS restricted solid waste;
- Filling and compaction of the ACSs into the containment cell;
- Verifying the removal of ACS from the pipeways (and other areas on site as necessary);
- Closure of the containment cell; and
- Managing and monitoring the containment cell into the future.

In the event that biopiling does not effectively reduce the level of contaminants to a restricted level in the required timeframe, Special Hazardous Waste will be removed off-site for treatment and disposal at an appropriately licenced facility.

The location of the Site, the Project Area, pipelines, containment cell and noise sensitive receivers considered by this assessment are shown in Figure 1-1.

# Figure 1-1 ACS Project Area



# 2 ASC CONSTRUCTION PROGRAM

The ACS Modification works to construct, fill and close the cell are estimated to take approximately 18 months (commencing January 2017 and concluding June 2018). The five main stages are described in Table 2-1, along with the approximate durations for each stage and locations on site. Additionally, construction equipment required for the works and corresponding sound power levels are shown in the table. Further specifics relating to the layout of the containment cells and locations of the hazardous material on the Site are provided in the SEE.

# Table 2-1 Constructions Stages and Equipment

| ACS<br>Modification<br>Works Stages | Approximate<br>Duration | Location<br>on Site       | Construction<br>Equipment                                                                                      | Equipment<br>Quantities                                              | Sound Power<br>Level per Plant<br>Item (dBA) | Activity<br>Sound<br>Power<br>Level<br>(dBA) |
|-------------------------------------|-------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
|                                     |                         |                           | Water Truck                                                                                                    | 1                                                                    | 108                                          |                                              |
| Cell Construction                   | 6 months                | Tank Bunds<br>for 224,    | Trucks with aggregate<br>and liners                                                                            | 4 per day all<br>week for up to 3<br>separate weeks<br>over 6 months | 105                                          |                                              |
|                                     |                         | 225, 333,                 | Compactor                                                                                                      | 1                                                                    | 107                                          | 111                                          |
|                                     |                         | 334, 335                  | Manitou Forklift                                                                                               | 1                                                                    | 95                                           |                                              |
|                                     |                         |                           | Small excavator – 5 T                                                                                          | 1                                                                    | 100                                          |                                              |
|                                     |                         |                           | D6 Dozer                                                                                                       | 1                                                                    | 113                                          |                                              |
| Excavation and                      | tion and                |                           | Excavator                                                                                                      | 1                                                                    | 108                                          |                                              |
| Transport of                        | 6 months                | Pipeways<br>with ACS      | Truck and Dog                                                                                                  | 1                                                                    | 105                                          | 108                                          |
| ACSs                                |                         |                           | Water Truck                                                                                                    | 1                                                                    | 108                                          |                                              |
| ACS Preparation<br>(via biopiling)  |                         | Tank Bunds                | 360 degree 30 tonne<br>crawler mounted back<br>actor-excavator<br>Allu Screener Crusher<br>Bucket (or similar) | 1                                                                    | 98                                           | 104                                          |
| Involving three discrete stages:    | 11 months               | T328,<br>T353,            | Water bowser with<br>spray feed                                                                                | 1                                                                    | 107                                          |                                              |
| Homogenisation;                     |                         | T215                      | Trucks                                                                                                         | 2                                                                    | 105                                          |                                              |
| Biopile                             |                         | T213,<br>T214             | Whacker rammer                                                                                                 | 1                                                                    | 107                                          |                                              |
| construction /                      |                         | T327, T213                | Welder tools                                                                                                   | 1                                                                    | 90                                           | 110                                          |
| deconstruction;                     |                         | and T325                  | Bulldozer                                                                                                      | 1                                                                    | 113                                          |                                              |
| and Biopile                         |                         |                           | Small Excavator                                                                                                | 1                                                                    | 100                                          |                                              |
| Operation.                          |                         |                           | Tank and spray feed                                                                                            | 1                                                                    | 95                                           |                                              |
|                                     |                         |                           | Tank and spray feed                                                                                            | 1                                                                    | 95                                           | 100                                          |
|                                     |                         |                           | Vacuum blower                                                                                                  | 4                                                                    | 100                                          | 100                                          |
|                                     |                         | Tank Bunds                | D6 Dozer                                                                                                       | 1                                                                    | 113                                          |                                              |
| Cell Filling &                      | 6 months                | for 224,                  | Water Truck                                                                                                    | 1                                                                    | 107                                          |                                              |
| Management                          |                         | 225, 333,<br>334, 335     | Compactor                                                                                                      | 1                                                                    | 107                                          | 102                                          |
|                                     | 6 months                | Tank Bunds                | D6 Dozer                                                                                                       | 1                                                                    | 113                                          |                                              |
|                                     | 6 months                | Closure 6 months for 224, | Water Truck                                                                                                    | 1                                                                    | 108                                          | 111                                          |

| ACS<br>Modification<br>Works Stages | Approximate<br>Duration | Location<br>on Site | Construction<br>Equipment           | Equipment<br>Quantities                                              | Sound Power<br>Level per Plant<br>Item (dBA) | Activity<br>Sound<br>Power<br>Level<br>(dBA) |
|-------------------------------------|-------------------------|---------------------|-------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
|                                     |                         | 225, 333,           | Compactor                           | 1                                                                    | 107                                          |                                              |
|                                     |                         | 334, 335            | Manitou Forklift                    | 1                                                                    | 95                                           |                                              |
|                                     |                         |                     | Trucks with aggregate<br>and liners | 4 per day all<br>week for up to 3<br>separate weeks<br>over 3 months | 105                                          |                                              |
|                                     |                         |                     | Small excavator – 5 T               | 1                                                                    | 100                                          |                                              |

Note: \* It is unlikely that the mobile plant items identified would all concurrently operate at full capacity. The calculated total sound power level includes a -5dB correction to account for the operational on-time of the identified plant items.

# 2.1 Construction Hours

In accordance with the conditions of the approved demolition works:

- Construction is to be completed between 7.00 am and 10.00 pm seven days a week;
- High noise generating construction and demolition works would be confined to less sensitive times of the day, and shall not be undertaken on Sundays or public holidays or outside the hours of 7.00 am to 6.00 pm Monday to Saturday; and
- Construction outside these hours would only be undertaken in unique circumstances.

# **3 NOISE SENSITIVE RECEPTORS**

Potentially affected noise sensitive receptors, as identified by WM's previous assessments, are as follows:

- Receiver R1 44-64 Cook Street (Industrial Premises). Industrial premises adjacent to the Site to the west and sharing a common boundary.
- Receiver R2 30D Cook Street (Residential). Residential property adjacent to the Site to the west and sharing a common boundary.
- Receiver R3 Reserve Road (Residential). Residential properties north of the Site.
- Receiver R4 Prince Charles Parade (Residential). Residential properties close to the eastern right of way.
- Receiver R5 Corner of Captain Cook Drive and Silver Beach Road (Residential). Residential properties north of the Site.
- Receiver R6 Tasman Street (Residential). Residential property west of the Site.
- Receiver R7 35 Cook Street (Residential). Residential property north of the Site.
- Receiver R8 End of Chisholm Road (Industrial Premises). Industrial premises adjacent to

the Site to the west and sharing a common boundary.

• Receiver R9 – Sir Joseph Banks Drive (Industrial Premises). Industrial premises on the other side of Sir Joseph Banks Drive to the west of the Site.

Figure 1-1 shows the locations of the above receptors. It should be noted there are no residential receivers to the south of the Site that could be affected by the noise from the Project.

# 4 NOISE CRITERIA

Consistent with the demolition noise assessment, this assessment considers the approved noise limits set out in the existing Development Consent for Application SSD 5544, pursuant to Section 89E of the Environmental Planning and Assessment Act 1979 in 2014. This is deemed appropriate as the noise limits were established using the typical minimum background levels and are consistent with the *Interim Construction Noise Guideline (ICNG)*.

# 4.1 Existing Development Consent Noise Limits

Condition C16 of SSD 5544 MOD1 requires that the construction / demolition noise does not exceed the criteria in Table 4-1.

# Table 4-1 Construction Noise Limits in SSD 5544

| Location                                                  | Day, LAeq,15min | Evening , LAeq,15min |
|-----------------------------------------------------------|-----------------|----------------------|
| R2 – 30D Cook Street                                      | 46              | 40                   |
| At any other residence or other noise sensitive receivers | 50              | 45                   |

# 5 CONSTRUCTION NOISE ASSESSMENT

Noise levels at surrounding residential receivers have been predicted using the "CadnaA" acoustic noise prediction software implementing the ISO 9613 noise prediction algorithm with consideration to the construction noise sources identified in Table 2-1. Factors that are addressed in the noise modelling are:

- equipment sound level emissions and location;
- receiver locations / ground topography;
- noise attenuation due to geometric spreading;
- ground absorption; and
- atmospheric absorption.

The CadnaA modelling software is accepted by the EPA for use in environmental noise assessments.

Table 5-1 sets out the worst-case noise levels predicted to arise during the ACS Modification works together with the noise contributions predicted to arise from other potentially coinciding works and operations on the Kurnell site, these being:

- the refinery demolition works (as identified by the WM report prepared for the proposed modification to Development Consent SSD 5544 – Report No. 14074 Ver C dated October 2014); and
- the Sustainable Soil Regeneration Facility (SSRF) operation (as identified by the WM report prepared for the proposed works Report No. URS14416 Ltr 100615).

The predicted cumulative noise levels that may result should all identified works and operational components occur concurrently are compared against the relevant criteria for each sensitive receptor in the table.

| " Sensitive |                                                                                  | I                   | Predicted LAeq, 15min Noise Level |                   |            |                                           | Eve<br>Criteria<br>18:00-                 | Complies<br>with Criteria<br>(Yes / No) |     |
|-------------|----------------------------------------------------------------------------------|---------------------|-----------------------------------|-------------------|------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-----|
| #           | Receptors                                                                        | ACS<br>Construction | Refinery<br>Demolition            | SSRF<br>Operation | Cumulative | 18:00h<br>L <sub>Aeq,15min</sub><br>(dBA) | 22:00h<br>L <sub>Aeq,15min</sub><br>(dBA) | Day                                     | Eve |
| R1          | Cook Street<br>(Industrial Premises)                                             | 38                  | 51                                | 26                | 51         | 75                                        | 75                                        | Yes                                     | Yes |
| R2          | 30D Cook Street<br>(Residential Premises)                                        | 40                  | 50                                | 25                | 50         | 46                                        | 40                                        | No                                      | No  |
| R3          | Reserve Road<br>(Residential Premises)                                           | 35                  | 50                                | 23                | 50         | 50                                        | 45                                        | Yes                                     | No  |
| R4          | Prince Charles Parade<br>(Residential Premises)                                  | 28                  | 40                                | 24                | 40         | 50                                        | 45                                        | Yes                                     | Yes |
| R5          | Corner of Captain Cook<br>Drive and Silver Beach<br>Rd (Residential<br>Premises) | 32                  | 42                                | 30                | 43         | 50                                        | 45                                        | Yes                                     | Yes |
| R6          | Tasman Street<br>(Residential Premises)                                          | 29                  | 44                                | 27                | 44         | 50                                        | 45                                        | Yes                                     | Yes |
| R7          | Cook Street<br>(Residential Premises)                                            | 33                  | 45                                | 28                | 45         | 50                                        | 45                                        | Yes                                     | Yes |
| R8          | End of Chisholm Road<br>(Industrial Premises)                                    | 34                  | 45                                | 41                | 47         | 75                                        | 75                                        | Yes                                     | Yes |
| R9          | Sir Joseph Banks Drive<br>(Industrial Premises)                                  | 37                  | 47                                | 44                | 49         | 75                                        | 75                                        | Yes                                     | Yes |

# Table 5-1 Predicted Noise Levels – ACS Construction Works – LAeq, 15min

As shown in Table 5-1, the ACS Modification works would not be expected to generate any exceedances of the established construction noise criteria.

The identified cumulative exceedances during the daytime and evening periods at R2 and during the evening period at R3 are wholly controlled by the proposed refinery demolition works. On

their own the ACS Modification works would not be expected to impact these receivers.

The ACS Modification works noise contribution is at least 10 dB less than the demolition noise contribution for all receivers and, as such, no cumulative noise increase would be expected over the levels predicted by the assessment prepared for the demolition works (SSD 5544 MOD1).

# 6 OFF-SITE TRAFFIC NOISE ASSESSMENT

# 6.1 Traffic Noise Criteria

Noise criteria for assessment of road traffic noise are set out in the NSW Government's *NSW Road Noise Policy (RNP)*.

Table 6-1 presents the assessment criteria for residences to be applied to particular types of project, road category and land use.

In summary, the noise level goals at the residential receivers for the demolition works based on the *RNP* are:

- LAeq,15hr day 60 dBA
- L<sub>Aeq,9hr</sub> night 55 dBA

| Table 6-1 | Traffic Noise Criteria Extracted from the NSW RNP |
|-----------|---------------------------------------------------|
|           |                                                   |

| Deed                           |    |                                                                        | Assessment C             | Criteria – dBA          |
|--------------------------------|----|------------------------------------------------------------------------|--------------------------|-------------------------|
| Road<br>Category               |    | Type of Project / Land Use                                             | Day                      | Night                   |
|                                |    |                                                                        | (/am-10pm)               | (10pm-/am)              |
|                                | 1. | Existing residences affected by noise from $\ensuremath{\textbf{new}}$ | L <sub>Aeq,15hr</sub> 55 | L <sub>Aeq,9hr</sub> 50 |
| <b>F</b> (                     |    | freeway / arterial / sub-arterial road corridors                       | (external)               | (external)              |
| Freeway /                      | 2. | Existing residences affected by noise from                             |                          |                         |
| arterial /<br>sub-<br>arterial |    | redevelopment of existing freeway / arterial /                         |                          |                         |
|                                |    | sub-arterial roads                                                     | L <sub>Aeq,15hr</sub> 60 | L <sub>Aeq,9hr</sub> 55 |
|                                | 3. | Existing residences affected by additional traffic                     | (external)               | (external)              |
| Tudus                          |    | on existing freeways / arterial / sub-arterial roads                   |                          |                         |
|                                |    | generated by land use developments                                     |                          |                         |
|                                | 4. | Existing residences affected by noise from <b>new</b>                  |                          |                         |
|                                |    | local road corridors                                                   |                          |                         |
| Local                          | 5. | Existing residences affected by noise from                             |                          | L . F0                  |
| LUCAI                          |    | redevelopment of existing local roads                                  | LAeq,1hr 55              | LAeq,1hr 50             |
| roads                          | 6. | Existing residences affected by <b>additional traffic</b>              | (external)               | (external)              |
|                                |    | on existing local roads generated by land use                          |                          |                         |
|                                |    | developments                                                           |                          |                         |

In addition, where the above criteria are already exceeded as a result of existing traffic, the policy notes:

For existing residences and other sensitive land uses affected by additional traffic on existing roads generated by land use developments, any increase in the total traffic noise level should be limited to 2 dB above that of the corresponding 'no build option'.

# 6.2 Traffic Noise Assessment

Vehicles related to the ACS Modification works would access the Site from Solander Street via Captain Cook Drive. Captain Cook Drive is the major access road to the Kurnell Peninsula on the southern shore of Botany Bay from the wider Sydney road network.

Dependent on the success of the biopiling works, up to approximately 180 truck and dog loads may be required to remove special hazardous waste from Site. It is likely that these movements would occur over a number of months. Over this period, approximately 3-4 heavy vehicle movements a day may be generated.

The existing traffic noise levels along the Captain Cook Drive already exceed the noise criteria of 60 and 55 dBA for the day and night, respectively. Captain Cook Drive east of Gannons Road has an average annual daily traffic flow of 38,810 (two-way) vehicles per day in 2012. Given these volumes, the noise contribution from traffic generated by the ACS works would be negligible at residences on Captain Cook Drive (that is, less than a 2 dB increase).

# 7 CONCLUSION

Caltex proposes to undertake Asbestos Contaminated Soil management on its Kurnell site. Wilkinson Murray has undertaken a desktop construction noise assessment in relation to these works.

This assessment has identified no further exceedances beyond those previously reported and therefore no further specific noise mitigation measures are warranted.

Notwithstanding this, it is recommended that relevant reasonable and feasible noise mitigation measures should be adhered to in order minimise and manage the potential noise impacts from the Site as a whole. It is understood that these measures are already being implemented during the demolition works at the Site and should be consistent where applicable.

# Appendix B

Asbestos Containment Cell Concept Design Report



Kurnell Asbestos Contaminated Soil Management Project Caltex Petroleum Australia Pty Ltd 29-Sep-2016 Doc No. 01

# ACS Management Project -Containment Cell Concept Design



# ACS Management Project - Containment Cell Concept Design

Client: Caltex Petroleum Australia Pty Ltd

ABN: 17 000 007 876

Prepared by

## AECOM Services Pty Ltd

Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8934 0000 F +61 2 8934 0001 www.aecom.com ABN 46 000 691 690

29-Sep-2016

Job No.: 60488804

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM Services Pty Limited. All rights reserved.

No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between AECOM Services Pty Limited (AECOM) and the addressee of this report. AECOM accepts no liability of any kind for any unauthorised use of the contents of this report and AECOM reserves the right to seek compensation for any such unauthorised use.

#### Document Delivery

AECOM Services Pty Limited (AECOM) provides this document in either printed format, electronic format or both. AECOM considers the printed version to be binding. The electronic format is provided for the client's convenience and AECOM requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Electronic Transactions Act 2002.

# **Quality Information**

| Document    | ACS Management Project - Containment Cell Concept Design |
|-------------|----------------------------------------------------------|
| Ref         | 60488804                                                 |
| Date        | 29-Sep-2016                                              |
| Prepared by | Katherine Dodd                                           |
| Reviewed by | Chani Lokuge                                             |

# **Revision History**

| Revision | Revision         | Details       | Authorised                                           |           |  |
|----------|------------------|---------------|------------------------------------------------------|-----------|--|
|          | Date             |               | Name/Position                                        | Signature |  |
| 02       | 29-Sept-<br>2016 | Final (Rev 2) | William Miles<br>Associate Director -<br>Environment | YA        |  |
| 01       | 12-Jul 2016      | Final (Rev 1) | William Miles<br>Associate Director -<br>Environment | YA.       |  |
|          |                  |               |                                                      |           |  |
|          |                  |               |                                                      |           |  |

# Table of Contents

| Execut | tive Summa | ary                                                       | i  |
|--------|------------|-----------------------------------------------------------|----|
| 1.0    | Introdu    | iction                                                    | 1  |
|        | 1.1        | Project Background                                        | 1  |
|        | 1.2        | Objectives                                                | 2  |
|        | 1.3        | Scope of Work                                             | 2  |
|        | 1.4        | Site Definition                                           | 2  |
| 2.0    | Waste      | Classification                                            | 5  |
|        | 2.1        | Classification of Waste                                   | 5  |
|        |            | 2.1.1 Presence of Asbestos                                | 5  |
|        |            | 2.1.2 Presence of Contaminants Other Than Asbestos        | 5  |
|        |            | 2.1.3 Combined Waste Classification                       | 6  |
| 3.0    | Options    | s Analysis for Management of Hazardous Waste              | 7  |
|        | 3.1        | Assessment Criteria                                       | 7  |
|        | 3.2        | Management Option 1 – Disposal off-site                   | 7  |
|        | 3.3        | Management Option 2 – Treatment and Disposal On-Site      | 8  |
|        |            | 3.3.1 Treatment Options                                   | 8  |
|        |            | 3.3.2 Soil Washing                                        | 11 |
|        | 3.4        | Summary of Hazardous Waste Treatment and Disposal Options | 12 |
| 4.0    | Concer     | pt Design                                                 | 14 |
|        | 4.1        | Containment Cell Capacity                                 | 14 |
|        | 4.2        | Suitability of Site                                       | 14 |
|        | 4.3        | Containment Cell Lavout and Design                        | 14 |
|        |            | 4.3.1 General Lavout                                      | 14 |
|        |            | 4.3.2 Earthworks                                          | 15 |
|        |            | 4.3.3 Liner Design and Grading                            | 15 |
|        |            | 4.3.4 Leachate Collection System                          | 15 |
|        |            | 4.3.5 Cap Design and Grading                              | 15 |
|        | 4.4        | Leachate Barrier System                                   | 16 |
|        | 4.5        | Leachate Management System                                | 17 |
|        |            | 4.5.1 Storage                                             | 17 |
|        |            | 4.5.2 Treatment and Disposal                              | 18 |
|        | 4.6        | Water Management                                          | 18 |
|        |            | 4.6.1 Stormwater Management                               | 18 |
|        |            | 4.6.2 Flooding                                            | 19 |
|        |            | 4.6.3 Groundwater Monitoring                              | 19 |
|        | 4.7        | Landfill Gas Management and Monitoring                    | 20 |
|        | 4.8        | Amenity Issues: Odour, Dust, Noise, Litter and Fire       | 22 |
|        |            | 4.8.1 Odour Control                                       | 22 |
|        |            | 4.8.2 Dust Emissions                                      | 22 |
|        |            | 4.8.3 Noise Control                                       | 22 |
|        |            | 4 8 4 Litter and Debris Control                           |    |
|        |            | 4.8.5 Fire Prevention                                     | 22 |
|        | 4.9        | Cover, Capping and Revegetation                           | 23 |
|        | 4.10       | Water Balance                                             | 25 |
|        | 4.11       | Drawings and Technical Specifications                     | 25 |
|        | 4.12       | Schedule of Quantities                                    | 25 |
| 50     | Conclu     | ision and Recommendations                                 | 28 |
| 2.0    | 5 1        | Management of Hazardous Waste                             | 20 |
|        | 52         | Concept Design                                            | 20 |
| 6.0    | Refere     | nces                                                      | 20 |
| 7.0    | Design     | Report Limitations                                        | 30 |
|        | _ 00.91    |                                                           | 00 |
| Appen  | dix A      |                                                           |    |

Drawings and Technical Specifications

А

# Appendix B

**Technical Specifications** 

# List of Figures

| Figure 1 | Site Location                                                                       | 3  |
|----------|-------------------------------------------------------------------------------------|----|
| Figure 2 | Site Features                                                                       | 4  |
| Figure 3 | Proposed Containment Cell Liner                                                     | 17 |
| Figure 4 | Kurnell Groundwater Monitoring Bores and Flow in Close Proximity to the Containment |    |
|          | Cell (Source: Coffey (2015a), Coffey (2015b))                                       | 19 |
| Figure 5 | Proposed Containment Cell Cap                                                       | 24 |

# List of Tables

| Table 1  | Kurnell Pipeways – Waste Classification and Estimated Waste Volume                 | i  |
|----------|------------------------------------------------------------------------------------|----|
| Table 2  | Decision Matrix – Treatment of Special Hazardous Waste                             | ii |
| Table 3  | Site Identification Information                                                    | 2  |
| Table 4  | 2013 and 2016 Leachability (Source: AECOM 2016a, AECOM 2013)                       | 5  |
| Table 5  | Kurnell Pipeways – Waste Classification and Estimated Waste Volume                 | 6  |
| Table 6  | Hazardous Soil Remediation Technology Assessment Criteria                          | 7  |
| Table 7  | Estimated Cost of Off-Site Disposal of Special Hazardous Waste                     | 8  |
| Table 8  | Estimated Cost of On-Site Biopiling Treatment of Special Hazardous Waste           | 9  |
| Table 9  | Estimated Cost of On-Site Trommel Treatment of Special Hazardous Waste             | 10 |
| Table 10 | Estimated Cost of On-Site Thermal Treatment of Special Hazardous Waste             | 10 |
| Table 11 | Estimated Cost of On-Site Stabilisation/ Solidification of Special Hazardous Waste | 11 |
| Table 12 | Estimated Cost of On-Site Soil Washing of Special Hazardous Waste                  | 12 |
| Table 13 | Decision Matrix – Treatment of Special Hazardous Waste                             | 12 |
| Table 14 | Containment Cell Design Leachate Barrier System Requirements                       | 16 |
| Table 15 | Health Screening Levels Fractions and Corresponding Equivalent Carbon Range        |    |
|          | (source: Table 1, NEPM B2)                                                         | 20 |
| Table 16 | Gas Generation Considerations for TPH                                              | 20 |
| Table 17 | Containment Cell Design Site Capping and Revegetation Requirements                 | 23 |
| Table 18 | Water Balance Model Results                                                        | 25 |
| Table 19 | Schedule of Quantities - Kurnell Containment Cell                                  | 26 |

# **Executive Summary**

Caltex Australia Pty Ltd (Caltex) currently operates the Kurnell Terminal (the 'Site') on the southern side of Botany Bay, NSW. Between 1956 and 2014 the Site was used as both an oil refinery and a fuel terminal. In 2014 refining ceased and now the main purpose of the Site is as a fuel import terminal, although other ancillary and related operations also occur.

Caltex is aware that certain parts of the Site contain Asbestos Contaminated Soils (ACSs). This contamination is largely due to the historic use of asbestos containing materials (ACM) at the Site when it was operating as a refinery.

Investigations have shown that the ACS is predominantly located within the certain sections of the pipeways that cross the Site (the 'pipeways'). As such Caltex require an Exemption Order to Section 419 of the *Work, Health and Safety Regulation 2011* in order to complete conversion and demolition activities, routine maintenance, sampling, valve operations, weed removal etc. within the pipeways. The ongoing maintenance and operation work is required to maintain the safety of the Site, its employees, the local community and the environment. As a result of the presence of ACM, Caltex staff and contractors require special processes and equipment in order to work in these areas.

The ACSs in the pipeways are currently being managed in situ, however in order to remove the ongoing health and safety risks and to remove the operational constraints, Caltex initiated the Asbestos Contaminated Soil Management Project (the Project) to investigate whether another option would be a more appropriate long term solution and to develop and implement the preferred solution.

The *Kurnell ASC Management – Options Report* (AECOM, 2016b) identified that the best option for the long term management of the ACS, in light of the project objectives outlined below, is placement of ACS within an on-site containment cell.

The objective of the Project is to remove the hygiene risk posed by ACSs from the pipeways. Removing this risk will remove:

- the potential health risks associated with the presence of ACS;
- the operational constraints regarding work in the pipeways, and
- the additional costs associated with the operational constraints.

Therefore, removing the ACSs will in turn support the overall objective for the conversion of the Site from a refinery to a terminal which was "to establish a viable, safe, reliable and sustainable finished product import terminal at Kurnell".

The objectives of this study are to:

- Identify the type of waste and quantity of waste to be placed in the containment cell.
- Prepare a concept design for the containment cell.

## Waste Classification

Based on review of the new and existing data provided in the *Pipeways Waste Classification Report*, the areas of soil required to be placed in the on-site containment cell, treated and disposed off-site or left in-situ have been calculated. The extent of each of these areas is shown on **Figure 2**. The calculated volumes are listed in **Table 1**.

| Soil Category* |                                                                                   | Area (ha) | Volume <sup>1</sup> (m <sup>3</sup> ) | Mass (tonnes)** |
|----------------|-----------------------------------------------------------------------------------|-----------|---------------------------------------|-----------------|
| 1              | Remain in-situ (asbestos not detected)                                            | 3.48      | 6,955                                 | -               |
| 2              | On-site containment cell -<br>Special Waste (Asbestos)/ General Solid<br>Waste    | 3.57      | 7,960                                 | 10,600          |
| 3              | On-site containment cell –<br>Special Waste (Asbestos)/ Restricted<br>Solid Waste | 1.15      | 2,308                                 | 3,100           |
| 4              | Special Waste (Asbestos)/ Hazardous<br>Waste                                      | 1.44      | 2,880                                 | 3,850           |
| Tota           | Il volume for containment cell (2+3)                                              | 4.72      | 10,268                                | 13,700          |
| Tota           | Il volume for containment cell (2+3+4)***                                         | 6.16      | 13,148                                | 17,550          |

## Table 1 Kurnell Pipeways – Waste Classification and Estimated Waste Volume

\*Waste Classification based on the Waste Classification Guidelines (EPA, 2014), Table 1 where TCLP was not undertaken and Table 2 where TCLP was undertaken.

\*\*The conversion density used for soil from m<sup>3</sup> to tonnes is 1.34 t/m<sup>3</sup> based on the average minimum dry density tests carried out for soils located at the proposed asbestos containment cell area and assuming a moisture content of 5%.

\*\*\* Hazardous Waste will not be disposed of in the containment cell unless treated to a restricted level.

The volume of waste was determined based on an excavation depth of 0.2 m in most instances. At three locations asbestos was detected at 0.5 m below ground. At these locations the volume of soil excavated will be to a depth of 0.5 m.

# **Hazardous Waste Options Analysis**

Based on the waste classification undertaken approximately 3,850 tonnes (or 2,880 m<sup>3</sup>) of soil in the pipeways has been classified as Special Hazardous Waste using the in-situ soil density. Using a 40% contingency to allow for sensitivities in soil density and volume estimating processes it has been assumed that 5,390 tonnes (or 4,032 m<sup>3</sup>) of Special Hazardous Waste would require treatment and disposal.

The soil is contaminated with:

- 1. Friable asbestos;
- 2. Total Petroleum Hydrocarbons (TPH) (C10-C36 fraction);
- 3. Benzo(a)pyrene (restricted waste levels); and
- 4. Metals (restricted waste levels).

As per the Waste Classification Guidelines (EPA, 2014), waste classified as Hazardous Waste cannot be disposed of in NSW and must be treated prior to disposal. This requirement to not landfill un-treated Hazardous Waste has also been adopted in the recently released Landfill Guidelines (EPA, 2016), which states "untreated hazardous wastes are not permitted to be landfilled in NSW. However some hazardous wastes can be treated to remove or lock up (immobilise) contaminants. This may enable the waste to be reclassified as restricted or general solid waste, and only then disposed of in a landfill".

Therefore the following options for management of Special Hazardous Waste were considered:

- Option 1: Special Hazardous Waste sent off-site for pre-treatment and disposal by a licenced contractor.
- Option 2: Special Hazardous Waste treated on-site for specific contaminants to enable re-classification as Special Restricted Solid Waste as a minimum in accordance with the Waste Classification Guidelines (EPA, 2014) prior to disposal within the proposed containment cell.

The following on-site treatment methods were reviewed:

- Biopiling;
- Trommelling;

- Thermal Desorption;
- Stabilisation/solidification; and
- Soil washing.

Based upon the assessment of the Hazardous Waste treatment options (refer to **Table 2**), the potential risk to human health and the environment and the cost effectiveness of each option, the preferred option for managing Special Hazardous Waste from the pipeways, was considered to be remediation via trommelling. Biopiling and off-site disposal were ranked second and third respectively.

| Criteria                     | Weighting | Off-Site<br>Disposal | Biopiling | Trommelling | Thermal<br>Desorption | Stabilisation /<br>Solidification | Soil<br>Washing |
|------------------------------|-----------|----------------------|-----------|-------------|-----------------------|-----------------------------------|-----------------|
| (as detailed in Section 3.1) | (0-5)     |                      |           | Score       | s (0-5)               |                                   |                 |
| Technical                    | 5         | 4                    | 3         | 2           | 4                     | 0                                 | 3               |
| Timing                       | 3         | 5                    | 3         | 4           | 4                     | 3                                 | 4               |
| Cost                         | 4         | 2                    | 4         | 5           | 1                     | 3                                 | 2               |
| Logistics                    | 2         | 3                    | 4         | 4           | 2                     | 3                                 | 2               |
| Sustainability               | 3         | 3                    | 4         | 4           | 1                     | 4                                 | 3               |
| Final Score                  |           | 58                   | 60        | 62          | 43                    | 39                                | 48              |

Table 2 Decision Matrix – Treatment of Special Hazardous Waste

The grades, ranging from 0 to 5, were attributed for each criterion-technology combination and final scores were obtained by multiplying the respective weight and score vectors.

# **Concept Design**

The containment cell has been designed to create a maximum airspace capacity for up to 24,500 tonnes of ACS. The 24,500 tonnes has been determined based on the following:

- 10,600 tonnes of Special General Solid Waste;
- 3,100 tonnes of Special Restricted Solid Waste;
- 3,850 tonnes of Special Hazardous Waste, should treatment be conducted on-site to allow re-classification as either Special General Solid Waste or Special Restricted Solid Waste; and
- A 40% contingency<sup>1</sup> which allows for sensitivity in soil density and potential use of daily cover soils during waste placement if required.

Based on an average maximum wet density of 1.6 t/m<sup>3</sup>; a 24,500 tonne capacity containment cell would require a waste containment volume of approximately 15,300 m<sup>3</sup>. This airspace volume has been allowed between the top of the liner and leachate collection system layers and the underside of capping layers and the final height adopted during waste placement.

Provided the highest classification of waste contained within the containment cell is Special Restricted Solid Waste the containment cell has been designed in accordance with the requirements of a restricted landfill cell. The concept design of the proposed containment cell has been prepared generally in accordance with the Landfill Guidelines (EPA, 2016).

Due to the shallow groundwater level, excavation in the existing ground surface has been minimised as far as practicable to minor excavation in the sump bases.

The concept design drawings are provided in **Appendix A**. Draft technical specifications for key components of the containment cell barrier system are provided in **Appendix B**. These specifications will be finalised as part of the detailed design stage of the Project.

<sup>&</sup>lt;sup>1</sup> Contingency has been allowed for based on sensitivities around soil type, soil density factors and treatment process \AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016

Prepared for - Caltex Petroleum Australia Pty Ltd - ABN: 17 000 007 876

## Recommendations

It is recommended that a small scale pilot trial should be conducted of intensive biopiling and trommelling to confirm the feasibility of treating Special Hazardous Waste using these methods to determine which option is more suitable given the contaminant concentrations in the soil.

Following acceptance of the concept design by Caltex a detailed design would be prepared including specifications and drawings suitable for inclusion in a tender package for the construction of the containment cell.

# 1.1 Project Background

Caltex Australia Pty Ltd (Caltex) currently operates the Kurnell Terminal (the 'Site') on the southern side of Botany Bay, NSW. Between 1956 and 2014 the Site was used as both an oil refinery and a fuel terminal. In 2014 refining ceased and now the main purpose of the Site is as a fuel import terminal, although other ancillary and related operations also occur.

The process to convert the refinery to a terminal has involved a number of related activates including numerous upgrades and changes to operational infrastructure, as well as the removal and demolition of redundant infrastructure and waste. The objective of these conversion works was and remains as works progress "*to establish a viable, safe, reliable and sustainable finished product import terminal at Kurnell*". This includes providing a safe working environment at the terminal and also ensuring that the operation of the Site is not burdened by unnecessary costs.

Caltex is aware that certain parts of the Site contain Asbestos Contaminated Soils (ACSs). This contamination is largely due to the historic use of asbestos containing materials (ACM) at the Site when it was operating as a refinery.

Investigations have shown that the ACS is predominantly located within the certain sections of the pipeways that cross the Site (the 'pipeways'). As such Caltex require an Exemption Order to Section 419 of the *Work, Health and Safety Regulation 2011* in order to complete conversion and demolition activities, routine maintenance, sampling, valve operations, weed removal etc. within the pipeways. The ongoing maintenance and operation work is required to maintain the safety of the Site, its employees, the local community and the environment. As a result of the presence of ACM, Caltex staff and contractors require special processes and equipment in order to work in these areas.

Whilst Caltex implements a number of measures and controls to manage the risks related to working close to ACSs, their presence maintains an ongoing health and safety risk at the Site. It also creates operational constraints for working in the pipeways and in other areas should ACSs be identified as the demolition works progress. As such, Caltex would like to remove the ACSs from these areas as far as possible to reduce health and safety risks and to remove operational constraints.

The presence of ACSs at the Site was discussed in both the development application for the conversion works (SSD 5544) and the modification application for the demolition works (SSD 5544 MOD1). The risks associated with working within the pipeways and other areas that may contain ACSs were identified and assessed.

In the Statement of Environmental Effects (SEE) for SSD 5544 MOD1, Section 9.7.1 (URS, 2014) noted three potential options for managing asbestos:

- 1. Managing asbestos in situ;
- 2. Containment on site; and
- 3. Removal of contaminated material from the Site.

The ACSs in the pipeways are currently being managed in situ, however in order to remove the ongoing health and safety risks and to remove the operational constraints, Caltex initiated the Asbestos Contaminated Soil Management Project (the Project) to investigate whether one of the other two options would be a more appropriate long term solution and to develop and implement the preferred solution.

The *Kurnell ASC Management* – *Options Report* (AECOM, 2016b) identified that the best option for the long term management of the ACS, in light of the project objectives outlined below, is placement of ACS within an on-site containment cell. In order to support the conclusions in this report AECOM have also prepared the *Pipeways Asbestos Waste Classification* Report (AECOM, 2016a) which identified areas within the pipeways which contain asbestos and the *Kurnell Terminal Geotechnical / ESA* (AECOM, 2016c) which evaluated the geotechnical and environmental suitability of the proposed location.

# 1.2 Objectives

The objective of the Project is to remove the hygiene risk posed by ACSs from the pipeways. Removing this risk will remove:

- the potential health risks associated with the presence of ACS;
- the operational constraints regarding work in the pipeways, and
- the additional costs associated with the operational constraints.

Therefore, removing the ACSs will in turn support the overall objective for the conversion works "to establish a viable, safe, reliable and sustainable finished product import terminal at Kurnell".

The objectives of this study are to:

- Identify the type of waste and quantity of waste to be placed in the containment cell.
- Prepare a concept design for the containment cell.

# 1.3 Scope of Work

The following tasks were undertaken and documented in this report:

- Summarise the waste classification and estimated quantities of ACS identified in the *Pipeways Asbestos Waste Classification Report* (AECOM, 2016a) to determine the specifications for the concept design.
- Undertake an options assessment to identify a preferred method for treatment and disposal of Hazardous Waste contaminated with asbestos.
- Prepare a concept design for an on-site containment cell in accordance with the NSW EPA Solid Waste Landfill Guidelines 2016 (the Landfill Guidelines).

# 1.4 Site Definition

The location of the Site is shown in **Figure 1**, and the proposed location of the containment cell and pipeways with ACSs are shown in **Figure 2**.

| Items                     | Details                                                                                                                                                                                                                                                                                                                              |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site address              | Solander Street, Kurnell, 2231, NSW, Australia                                                                                                                                                                                                                                                                                       |
| Zoning of site            | Zone IN3 Heavy Industrial under the Sutherland Shire Local Environment Plan 2015                                                                                                                                                                                                                                                     |
| Current site use          | Liquid Fuel Depot – specifically a finished fuel import terminal                                                                                                                                                                                                                                                                     |
| Adjacent site uses        | <ul> <li>Adjacent land uses to the Site include:</li> <li>North and North-west: Village of Kurnell and Marton Park</li> <li>East and South: Kamay Botany Bay National Park</li> <li>West: Quibray Bay</li> <li>South-west: land zoned as general industrial, light industrial, special industrial and special development</li> </ul> |
| Pipeway description       | The pipeways are shown on <b>Figure 2</b> and are located across the Site. The pipeways traverse an area of approximately $96,390 \text{ m}^2$ .                                                                                                                                                                                     |
| Containment cell location | The proposed location of the containment cell is shown in <b>Figure 2</b> .                                                                                                                                                                                                                                                          |

| Table 3 | Site Identification | Information |
|---------|---------------------|-------------|
|         | one racintineation  | mormation   |

#### Figure 1 Site Location



\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

#### Figure 2 Site Features



\\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

# 2.0 Waste Classification

This chapter provides a summary of the findings from the *Pipeways Asbestos Waste Classification Report* (AECOM, 2016a). The report identified the waste classification for soils within the pipeways (refer to **Figure 2**) based on two investigations, one in 2013 and one in 2016.

# 2.1 Classification of Waste

# 2.1.1 Presence of Asbestos

Asbestos contaminated waste is classified as 'Special Waste', under the *NSW EPA Waste Classification Guidelines 2014* (the Waste Classification Guidelines). Special Waste has unique regulatory requirements for disposal given the need to minimise the risk of harm to the environmental and human health.

The Pipeways Asbestos Waste Classification Report (AECOM, 2016a) found that friable asbestos and asbestos fines exceeded the National Environment Protection (Assessment of Contaminated Land) Measure (NEPM) 1999, National Environment Protection Council Amendment 2013. Schedule B1, Guideline on Investigation Levels for Soil and Groundwater (ASC NEPM, 2013) health screening levels (HSL) D criteria of 0.001% in 67% of all samples analysed that had detections of asbestos in 2013 and 2016 investigation works. The results therefore confirm that soils along the pipeways where asbestos was detected require removal to reduce the risk posed to site workers and visitors. Based on these results the pipeways were delineated into areas with no detectable asbestos and where asbestos was detected.

Given the nature of the works undertaken at the Site, soil within the pipeways was also analysed for specific contaminant concentrations (SCC). Where SCC exceeded the limits provided in Table 1 and Table 2 of the Waste Classification Guidelines, ACS was also classified as General Solid, Restricted Solid or Hazardous Waste. In these instances wastes must be managed as both classifications (EPA, 2014).

Areas where no asbestos was detected, soils will be left in-situ.

# 2.1.2 Presence of Contaminants Other Than Asbestos

In order to classify waste as General Solid, Restricted Solid or Hazardous Waste, the maximum possible levels of contaminants in the waste must not exceed the SCC and/or toxicity characteristics leaching procedure (TCLP) test values for the classification provided in the Waste Classification Guidelines.

Of the samples analysed chromium, lead, nickel, mercury, benzo(a)pyrene and total petroleum hydrocarbons (TPH) (C10-C36 fraction) exceeded the general or restricted SCC level provided in Table 1 of the Waste Classification Guidelines. In order to determine the potential leachability of these contaminants a TCLP test was conducted on each contaminant, excluding TPH<sup>2</sup>.

The leachability data from *Caltex Kurnell (535) Pipeways Contamination Assessment / Characterisation - Stage 2 Report* (AECOM, 2013) and the data from the *Pipeways Asbestos Waste Classification Report* (AECOM, 2016a) is summarised in **Table 4** below. Based on these results the potential for concentrations of metals and benzo(a)pyrene expected to be detected in leachate, at concentrations greater than the NSW EPA (2014) TCLP limit for general solid waste, is low and acceptable.

| Contaminant    | Number of<br>Results | Number of Detections<br>Over Screening Criteria | TCLP1 Screening<br>Criteria (mg/L) | Range of Results<br>(mg/L) |
|----------------|----------------------|-------------------------------------------------|------------------------------------|----------------------------|
| Chromium       | 2                    | 0                                               | 5                                  | <0.1                       |
| Lead           | 21                   | 3                                               | 5                                  | <0.1 to 0.5                |
| Nickel         | 7                    | 2                                               | 2                                  | <0.1 to 0.2                |
| Mercury        | 3                    | 0                                               | 0.2                                | <0.001                     |
| Benzo(a)pyrene | 10                   | 0                                               | 0.04                               | <0.5                       |

## Table 4 2013 and 2016 Leachability (Source: AECOM 2016a, AECOM 2013)

Revision 02 – 29-Sep-2016

<sup>&</sup>lt;sup>2</sup> As per Table 2 of the Waste Classification Guidelines (EPA, 2014), petroleum hydrocarbons are assessed using the SCC1 and SCC2 criteria provided in Table 1. Therefore no TCLP analysis was conducted.

<sup>\\</sup>AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx

Prepared for - Caltex Petroleum Australia Pty Ltd - ABN: 17 000 007 876

It was noted that in all cases except one the classification for metals and benz(a)pyrene was General Solid Waste. For the exception, the SCC for mercury was above the concentration threshold in Table 2 of the Waste Classification Guidelines for General Solid Waste.

## 2.1.3 Combined Waste Classification

Based on the review of the new and existing data provided in the Pipeways Waste Classification Report, the areas of soil required to be placed in the on-site containment cell, treated and disposed off-site or left in-situ have been calculated. The extent of each of these areas is shown on **Figure 2**. The calculated volumes are listed in **Table 5** below.

| Table 5 | Kurnell Pipewa | /s – Waste Classification | and Estimated Waste Volume |
|---------|----------------|---------------------------|----------------------------|

| Soil Category*                                  |                                                                                   | Area (ha) | Volume <sup>1</sup> (m <sup>3</sup> ) | Mass (tonnes)** |
|-------------------------------------------------|-----------------------------------------------------------------------------------|-----------|---------------------------------------|-----------------|
| 1                                               | Remain in-situ (asbestos not detected)                                            | 3.48      | 6,955                                 | -               |
| 2                                               | On-site containment cell -<br>Special Waste (Asbestos)/ General Solid<br>Waste    | 3.57      | 7,960                                 | 10,600          |
| 3                                               | On-site containment cell –<br>Special Waste (Asbestos)/ Restricted<br>Solid Waste | 1.15      | 2,308                                 | 3,100           |
| 4                                               | Special Waste (Asbestos)/ Hazardous<br>Waste                                      | 1.44      | 2,880                                 | 3,850           |
| Total volume for containment cell (2+3)         |                                                                                   | 4.72      | 10,268                                | 13,700          |
| Total volume for containment cell<br>(2+3+4)*** |                                                                                   | 6.16      | 13,148                                | 17,550          |

\*Waste Classification based on the Waste Classification Guidelines (EPA, 2014), Table 1 where TCLP was not undertaken and Table 2 where TCLP was undertaken.

\*\*The conversion density used for soil from m<sup>3</sup> to tonnes is 1.34 t/m<sup>3</sup> based on the average minimum dry density tests carried out for soils located at the proposed asbestos containment cell area and assuming a moisture content of 5%.

\*\*\* Hazardous Waste will not be disposed of in the containment cell unless treated to a restricted level.

The volume of waste was determined based on an excavation depth of 0.2 m in most instances. At three locations asbestos was detected at 0.5 m below ground. At these locations the volume of soil excavated will be to a depth of 0.5 m.

Waste classified as both Special Waste and General Solid Waste will be referred to as Special Waste. Waste classified as both Special Waste and Restricted Solid Waste will be referred to as Special Restricted Solid Waste. Waste classified as both Special Waste and Hazardous Waste will be referred to as Special Hazardous Waste.

All waste classified as Special Waste and Special Restricted Solid Waste would be disposed of in an onsite containment cell. As such the minimum tonnages of soil disposed of in the proposed containment cell would be approximately 13,700 tonnes.

Management of Special Hazardous Waste is discussed in Section 3.0.

# 3.0 Options Analysis for Management of Hazardous Waste

Based on the waste classification undertaken in **Section 2.0** approximately 3,850 tonnes (or 2,880 m<sup>3</sup>) of soil in the pipeways has been classified as Special Hazardous Waste using the in-situ soil density. Using a 40% contingency to allow for sensitivities in soil density and volume estimating processes it has been assumed that 5,390 tonnes (or 4,032 m<sup>3</sup>) of Special Hazardous Waste would require treatment and disposal.

The soil is contaminated with:

- 1. Friable asbestos;
- 2. Total Petroleum Hydrocarbons (TPH) (C10-C36 fraction);
- 3. Benzo(a)pyrene (restricted waste levels); and
- 4. Metals (restricted waste levels).

As per the Waste Classification Guidelines, waste classified as Hazardous Waste cannot be disposed of in NSW and must be treated prior to disposal. This requirement to not landfill un-treated Hazardous Waste has also been adopted in the recently released Landfill Guidelines (EPA, 2016), which states "*untreated hazardous wastes are not permitted to be landfilled in NSW*. However some hazardous wastes can be treated to remove or lock up (*immobilise*) contaminants. This may enable the waste to be reclassified as restricted or general solid waste, and only then disposed of in a landfill".

Therefore the following options for management of Special Hazardous Waste have been considered:

- Option 1: Special Hazardous Waste sent off-site for pre-treatment and disposal by a licenced contractor.
- Option 2: Special Hazardous Waste treated on-site for specific contaminants to enable re-classification as Special Restricted Solid Waste as a minimum in accordance with the Waste Classification Guidelines prior to disposal within the proposed containment cell.

# 3.1 Assessment Criteria

The practicality of remediation technologies has been assessed based on the following criteria defined in **Table 6**. Weighting factors in **Table 6** were selected based on professional experience and client consultation from a range of 1 (lowest) to 5 (highest).

| Criteria       | Considerations                                                                                                                                           | Weighting |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Technical      | The physical ability to achieve the remediation goals. For example chemical and physical properties of the contaminant.                                  | 5         |
| Timing         | The time required to achieve the remediation goals.                                                                                                      | 3         |
| Financial      | The capital costs such as equipment and its installation / commissioning coupled with on-going costs such as maintenance and waste treatment / disposal. | 4         |
| Logistical     | Access to the site, availability of materials and infrastructure and the creation and disposal of wastes.                                                | 2         |
| Sustainability | Including environmental and social elements including efficient use of energy, use of green materials and perceived sustainability by community.         | 3         |

Table 6 Hazardous Soil Remediation Technology Assessment Criteria

To determine the costs associated with each option quotes were obtained from industry suppliers. These costs were provided based on either a  $m^3$  or t. Therefore the total cost to treat ACS classified as Hazardous Waste has been calculated based on either the cost per m<sup>3</sup> (4,032 m<sup>3</sup>) or cost per tonne (5,390 tonnes).

# 3.2 Management Option 1 – Disposal off-site

Under this option the 5,390 tonnes of Special Hazardous Waste would be sent off-site for pre-treatment and disposal by a licenced contractor. Material recovered from the pipeways, and classified as Special Hazardous Waste would be excavated directly into trucks and taken off-site by a licensed contractor for treatment prior to disposal. In the event that the waste soil is not able to be directly placed into a truck, the waste would be stockpiled at a designated location on Site. Dust suppression measures would be implemented during stockpiling.

Assuming each truck can hold 30 tonnes of soil; this would represent an additional 180 truckloads on NSW roads.

Based on consultation with Environmental Treatment Solutions, Bingo Industries and Cleanaway, the cost for transport, treatment and disposal by a licensed contractor would range between \$400 - \$1,200 per tonne. The variability in cost per tonne is based on uncertainty around treatment methods which would finalised upon excavation and analysis of the Special Hazardous Waste soil. Based on this cost rate, the 5,390 tonnes of Special Hazardous Waste would cost between \$2,156,000 - \$6,468,000 to be treated and disposed of off-site<sup>3</sup>.

#### Table 7 Estimated Cost of Off-Site Disposal of Special Hazardous Waste

| Disposal Option                   | Cost per tonne* | Cost for 5,390 tonnes     |
|-----------------------------------|-----------------|---------------------------|
| Off-site transport, treatment and | \$400 - \$1,200 | \$2,156,000 - \$6,468,000 |
| disposal by licensed contractor   |                 |                           |

\*Estimated cost provided by Bingo Industries (11/05/16) and, Environmental Treatment Solutions (10/05/16) and Cleanaway (27/05/16).

#### 3.3 Management Option 2 – Treatment and Disposal On-Site

#### 3.3.1 **Treatment Options**

In order to reduce the contaminant level of TPH in the ACS to a minimum of Restricted Solid Waste, the suitability of the following on-site treatment methods has been reviewed:

- Biopiling;
- Trommelling:
- Thermal Desorption;
- Stabilisation/solidification; and
- Soil washing.

A description of each of these methods is provided below.

#### 3.3.1.1 Biopiling

Biopiling is a biodegradation process which uses microbes present in soil to digest hydrocarbon based contaminants, including petroleum hydrocarbons.

The process may vary depending on the hydrocarbon contaminated material (specific contaminants and the matrix material); however the following general process would be applicable:

- The impacted material is stockpiled on an impermeable film (bio-pad) in a designated treatment area;
- Additives can be mixed into the material to aid the bioremediation process. Additives may include manure, nitrogen and mulch;
- Stockpiles are then cultivated by periodically revolving them with an excavator, or by injection of air through slotted or perforated piping placed throughout the pile to allow air exchange and the conversion of hydrocarbon compounds to carbon dioxide, water and microbial cell mass;
- Stockpile testing (contaminants of concern and microbiological indicators) is undertaken on a regular basis to measure the progress of the treatment;
- The process is repeated until validation samples show that the soil has been successfully decontaminated to an acceptable level for disposal into the on-site containment cell.

The Pipeways Asbestos Waste Classification Report (AECOM, 2016) found that the soils classified as Hazardous Waste comprises medium to heavier hydrocarbons. Therefore, evaporation of these contaminants is not expected. These contaminants would require biodegradation processes to be broken down. Heavier hydrocarbons also require a longer period of time to degrade. It is estimated that using a biopiling method, it may take up to 18 months to remediate the soil to a restricted SCC for TPH, so that it is appropriate for placement in the on-site containment cell.

<sup>&</sup>lt;sup>3</sup> These costs will depend upon laboratory analysis to be undertaken at the time of disposal.

<sup>\</sup>AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx

Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

Alternatively, intensive biopiling methods may be used, which require additives to increase the biodegradation rates and therefore reduce the required treatment time by up to 6 months.

There is a risk that lighter fractions may evaporate therefore the potential impacts of volatile organic compounds (VOCs) on local receptors would need to be considered. Controls may include capturing and treating vapours before they are emitted to the atmosphere (e.g. by passing gas emissions through activated carbon drums).

Given the presence of asbestos within the soil, the biopiles would need to be covered when not being turned. During the turning process, measures to reduce dust generation would need to be implemented in order to reduce potential impacts to air quality. Surface water management would need to be considered for runoff control. Diversion of clean stormwater reaching the biopile would be managed by bunds and channels.

For 5,390 tonnes of material, a minimum area of approximately 8,100 m<sup>2</sup> (for biopiles of 1.5 meters in height<sup>4</sup>) would be required at the Site. The height of the biopile can be increase to up to 2.5 m to reduce the area of land required. The length and width of the biopile may be restricted if aeration is to occur by manual revolving of the soils.

Advantages<sup>4</sup>:

- Caltex have experience with Biopiling at the Sustainable Soil Regeneration Facility (SSRF);
- Relatively simple to design and implement;
- Moderate treatment times (six months to 18 months);
- Effective on organic constituents with slow biodegradation rates;
- Can be designed as a closed system; and
- Can be engineered to be potentially effective for a combination of site conditions and petroleum products.

Limitations<sup>4</sup>:

- Concentration reductions >95% and constituent concentrations <0.1 ppm are very difficult to achieve;
- May not be effective for high constituent concentrations (>50,000 ppm total petroleum hydrocarbons), since these may inhibit microbial growth;
- Requires a large area of land for treatment, however the Site has a large amount of available space;
- Vapour generation during aeration may require treatment prior to discharge; and
- May require bottom liner if leaching from the biopile is a concern.

The estimated cost per cubic meters for biopiling is provided in Table 8.

#### Table 8 Estimated Cost of On-Site Biopiling Treatment of Special Hazardous Waste

| Treatment Method    | Cost per m <sup>3</sup> * | Cost for 4,032 m <sup>3</sup> |
|---------------------|---------------------------|-------------------------------|
| Biopiling           | \$55 - \$60               | \$201,607 - \$241,928         |
| Intensive Biopiling | \$167 - \$172             | \$673,956 - \$694,117         |

\*Estimated cost per tonne provided by InSitu Remediation Services. Note: cost per tonne may vary depending on laboratory analysis/trails undertaken at the time of the biopiling and additive selected for intensive biopiling.

#### 3.3.1.2 Trommelling

A trommel is a rotating, inclined, cylindrical device that receives and transports contaminated soil along its axis of revolution. As the material is transported, it is revolved and aerated, promoting the volatilisation of the petroleum hydrocarbons.

The same soil batch can go through the trommel many times and additives can enhance the process and accelerate volatilisation.

The whole process is enclosed, with dust and vapours being collected and/or treated.

<sup>&</sup>lt;sup>4</sup> US EPA (May 2004), How to Evaluate Cleanup Technologies for Underground Storage Tank Site, A Guide for Corrective Action Plan Reviewers, EPA 510-R-04-002, page IV-19 and IV-3

<sup>\</sup>AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx

Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

# Advantages:

- It is an enclosed system, therefore it could treat soils containing asbestos; and
- Short treatment time.

Limitations:

- More effective on lighter fraction hydrocarbons;
- May lead to further fragmentation of asbestos material; and
- Asbestos contamination of vapour recovery unit (VRU) would limit the future use, therefore additional maintenance costs may be incurred.

The estimated cost per cubic meters for remediation in a Trommel is provided in Table 9.

## Table 9 Estimated Cost of On-Site Trommel Treatment of Special Hazardous Waste

| Treatment Method | Cost per m <sup>3</sup> * | Cost for 4,032 m <sup>3</sup> | Replacement of VRU* |
|------------------|---------------------------|-------------------------------|---------------------|
| Trommelling      | \$55 - \$120              | \$221,768 - \$483,857         | \$7,500 - \$10,000  |

\*cost estimate provided by InSite Remediation, pers comms, 13/05/16

## 3.3.1.3 Thermal Desorption

Low Temperature Thermal Desorption (LTTD), also known as low-temperature volatilisation, thermal stripping, and soil roasting is an ex-situ remedial technology that uses heat to physically separate petroleum hydrocarbons from excavated soils. Vaporised hydrocarbons are generally treated in a secondary treatment unit prior to discharge to the atmosphere. Thermal desorption units may be mobile, therefore operated directly on-site. Desorption units are available in a variety of process configurations including rotary desorbers, asphalt plant aggregate dryers, thermal screws, and conveyor furnaces. LTTD is applicable to contaminants that are volatile at temperatures as great as 650°C.

Advantages:

- Rapid treatment time; up to 25 tonnes per hour throughput; and
- Can consistently reduce TPH to below 10 ppm and BTEX below 100 ppb.

Limitations:

- On-site treatment would require significant area (>0.25 ha) to locate LTTD unit and store processed soils;
- Soils excavated from below the groundwater table require dewatering prior to treatment because of their high moisture content;
- Regulators and community perception are not favourable towards thermal processes, often considered by many as a form of waste incineration; and
- Additional permits and community consultation may be required before commissioning a thermal treatment plant (even if small and mobile).

The estimated cost per tonne for thermal desorption is provided in Table 10.

## Table 10 Estimated Cost of On-Site Thermal Treatment of Special Hazardous Waste

| Treatment Method        | Cost per tonne*   | Cost for 5,390 tonnes     |  |  |
|-------------------------|-------------------|---------------------------|--|--|
| Low Temperature Thermal | \$1,000 - \$1,500 | \$5,390,000 - \$8,085,000 |  |  |
| Desorption              |                   |                           |  |  |

\*Based on costings obtained by AECOM for similar soil remediation works at a site in NSW

## 3.3.1.4 Stabilisation/Solidification

In this process contaminants are physically bound or enclosed within a stabilised mass (solidification), or have their mobility chemically reduced by stabilising agents (stabilisation). These processes can be used on heavy hydrocarbons (SVOC), metals and asbestos.

They may also be conducted within an enclosed unit (e.g. using a pugmill) or by mixing the soil and the reagents in piles using excavators.

\\AUSYD1FP001AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016

Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

Typical reagents are cement, fly ashes and synthetic clays.

Advantages:

- Short-term treatment timeframe (6 months)<sup>6</sup>;
- Can remediate a wide range/mix of contaminants, including heavy metals, petroleum hydrocarbons and asbestos<sup>5</sup>:
- Ex-situ or in-situ applicable<sup>5</sup>; and
- Process equipment occupies a relatively small footprint<sup>6</sup>.

Limitations:

- Site specific, requires laboratory and pilot scale testing of contaminated soils<sup>5</sup>;
- Does not destroy or remove the contaminants<sup>6</sup> therefore does reduce the SCC and does not meet the requirements of the Waste Classification Guidelines, Table 1, for the classification of Restricted and General Solid Waste for TPH;
- May result in an overall increase in volume of material to be disposed of<sup>6</sup>;
- Inhibitory substances (oils, free phase solvents, etc.) can limit efficacy<sup>5</sup>;
- Long term performance can be difficult to demonstrate to stakeholders<sup>5</sup> and require long-term monitoring<sup>6</sup>:
- Plant/mobilisation and installation cost relatively high due to the installation of the batching plant<sup>6</sup>; and
- If an enclosed unit is used for mixing additives, the cost associated with decontamination procedures will have to be accounted for, following completion of the works.

The estimated cost per cubic meters for remediation by stabilisation / solidification is provided in Table 11.

#### Table 11 Estimated Cost of On-Site Stabilisation/ Solidification of Special Hazardous Waste

| Treatment Method             | Cost per m <sup>3</sup> * | Cost for 4,032 m <sup>3</sup> |  |  |
|------------------------------|---------------------------|-------------------------------|--|--|
| Stabilisation/solidification | \$200-\$500               | \$806,428 - \$2,016,070       |  |  |

\*Based on costings for soil remediation works at a site in NSW

#### 3.3.2 Soil Washing

Soil washing or soil scrubbing is a water based process for remediation of excavated soils. Soil washing removes contaminants from the soil by dissolving and/or transferring contaminants on soil particles into the washwater. Washwater can be dosed with chemicals to improve process characteristic (such as pH, surface tension, etc.).

Soil washing can also be achieved by concentrating contaminants into a smaller volume of soil through particle size separation and attrition scrubbing.

The majority of inorganic and organic contaminants generally bind, either physically or chemically to fine particles (clays, silts, organic matter). These silts and clays in turn are attached to sand and gravel particles in the soils. Soil washing separates the contaminated silts and clays from the "clean" sands and gravels, thereby reducing the volume of contaminated material requiring further treatment or disposal.

Generally, it is considered that if the fine content of the soil is above 25%, then soil washing will not be effective.

Advantages<sup>6</sup>:

- Reduction in contaminated soil volume requiring further treatment or disposal (cost savings); and
- Can treat a wide range of contaminants.

<sup>6</sup> SKM (2014), Management of Contaminated Soils in South Australia

http://www.vertasefli.co.uk/our-solutions/expertise/stabilisation-and-solidification, viewed 18/05/16

<sup>\</sup>AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx

Limitations:

- Dependent on fine grains content (it should be less than 25% by weight<sup>7</sup>);
- May be uneconomic to treat small volumes, due to high plant and installation costs<sup>6</sup>;
- Produces concentrated contaminated sludge (potentially difficult to remediate or dispose)<sup>7</sup>; and
- Can require large volumes of washwater<sup>7</sup>, even when regeneration and reuse is taken into account.

The estimated cost per tonne for soil washing is provided in Table 12.

Table 12 Estimated Cost of On-Site Soil Washing of Special Hazardous Waste

| Treatment Method | Cost per tonne   | Cost for 5,390 tonnes |  |  |
|------------------|------------------|-----------------------|--|--|
| Soil Washing     | >\$400 per tonne | >\$2,156,000          |  |  |

# 3.4 Summary of Hazardous Waste Treatment and Disposal Options

Based on the information presented above, a decision matrix was populated. This matrix is shown in **Table 13**. On-site treatment of Hazardous Waste by trommelling was selected as the most appropriate option for treatment of Special Hazardous Waste prior to placement in the on-site containment cell. Biopiling also scored highly but may require a longer timeframe and slightly higher cost due to additives required for intensive biopiling. Disposal off-site scored highly due the short time frame and technical score, whereby it was an efficient option for removing the contaminated waste from the Site.

| Criteria                     | Weighting | Off-Site<br>Disposal | Biopiling | Trommelling | Thermal<br>Desorption | Stabilisation /<br>Solidification | Soil<br>Washing |
|------------------------------|-----------|----------------------|-----------|-------------|-----------------------|-----------------------------------|-----------------|
| (as detailed in Section 3.1) | (0-5)     | Scores (0-5)         |           |             |                       |                                   |                 |
| Technical                    | 5         | 4                    | 3         | 2           | 4                     | 0                                 | 3               |
| Timing                       | 3         | 5                    | 3         | 4           | 4                     | 3                                 | 4               |
| Cost                         | 4         | 2                    | 4         | 5           | 1                     | 3                                 | 2               |
| Logistics                    | 2         | 3                    | 4         | 4           | 2                     | 3                                 | 2               |
| Sustainability               | 3         | 3                    | 4         | 4           | 1                     | 4                                 | 3               |
| Final Sc                     | ore       | 58                   | 60        | 62          | 43                    | 39                                | 48              |

Table 13 Decision Matrix – Treatment of Special Hazardous Waste

The scores, ranging from 0 to 5, were attributed for each criterion-technology combination and final scores were obtained by multiplying the respective weighting and score.

A few comments on the scoring process:

- In terms of technical applicability:
  - Trommelling received a lower score due to the fact that this method is primarily for treatment of the lighter VOC compounds, trials would need to be conducted to confirm this method is appropriate;
  - Stabilisation / Solidification received a zero as this option does not reduce the SCC of TPH in the soil, therefore following treatment the soils would not meet the requirements of the Waste Classification Guidelines for classification as Restricted or General Solid Waste.
- The soil washing, off-site disposal and thermal desorption received low scores for the cost criteria, since they are not considered to be economically feasible for this application;
- Thermal desorption received low scores for the sustainability and logistics criteria, since this process requires intensive energy usage compared with other options, often has a negative community perception and may require additional permits and potential production of dewatered sludge requiring disposal off-site.

<sup>&</sup>lt;sup>7</sup> <u>http://www.vertasefli.co.uk/our-solutions/expertise/soil-washing,</u> viewed 18/05/16

<sup>\\</sup>AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx

Revision 02 – 29-Sep-2016

Prepared for - Caltex Petroleum Australia Pty Ltd - ABN: 17 000 007 876

Based upon the assessment of the Hazardous Waste treatment options discussed above, the potential risk to human health and the environment and the cost effectiveness of each option, the preferred option for managing Special Hazardous Waste from the pipeways was considered to be remediation via trommelling. Biopiling and off-site disposal were ranked second and third respectively. Therefore, it is recommended that a small scale pilot trial be conducted of intensive biopiling and trommelling to confirm the most appropriate method of treating asbestos contaminated Hazardous Waste given the contaminant concentrations in the ACS.
## 4.0 Concept Design

### 4.1 Containment Cell Capacity

The containment cell has been designed to create a maximum airspace capacity for up to 24,500 tonnes of ACS. The 24,500 tonnes has been determined based on the following:

- 10,600 tonnes of Special General Solid Waste;
- 3,100 tonnes of Special Restricted Solid Waste;
- 3,850 tonnes of Special Hazardous Waste, should treatment be conducted on-site to allow re-classification as either Special General Solid Waste or Special Restricted Solid Waste (as described in **Section 3.4**); and
- A 40% contingency<sup>8</sup> which allows for sensitivity in soil density and potential use of daily cover soils during waste placement if required.

Based on an average maximum wet density of 1.6 t/m<sup>3</sup>; a 24,500 tonne capacity containment cell would require a waste containment volume of approximately 15,300 m<sup>3</sup>. This airspace volume has been allowed between the top of the leachate barrier system and the underside of the capping layer. The final height adopted following placement of the ACS is discussed further in **Section 4.9**.

The highest classification of waste to be contained within the containment cell is Special Restricted Solid Waste, and therefore the containment cell has been designed in accordance with the requirements for a restricted landfill cell. The concept design of the proposed containment cell has been prepared generally in accordance with the Landfill Guidelines (EPA, 2016).

The concept design consists of the following key components:

- Containment Cell Layout and Design
- Leachate Barrier System
- Leachate Management System
- Surface Water Management
- Groundwater Management
- Landfill Gas Management and Monitoring
- Amenity issues: Odour, Dust, Noise, Litter and Fire
- Cover, Capping and Revegetation
- Water Balance

### 4.2 Suitability of Site

The *Kurnell Terminal Geotechnical / ESA* (AECOM, 2016c) identified that from a geotechnical and environmental standpoint it would be possible to construct a containment cell at the proposed location. Constraints associated with the shallow groundwater and bedrock preclude a below ground containment cell being constructed. Based on these findings the concept design has been based on construction of an aboveground containment cell.

### 4.3 Containment Cell Layout and Design

### 4.3.1 General Layout

The concept design for the containment cell has utilised and is contained within the tank bunds for tanks 224 and 225 and the majority of the bunded area for tanks 333, 334 and 335. The eastern side of the cell has been restricted to ensure it does not encroach within the 250 metre buffer to the Kamay Botany Bay National Park. The existing eastern bund shall be removed to allow surface water flows from the final cap to drain to the Site's stomwater drainage system.

<sup>&</sup>lt;sup>8</sup> Contingency has been allowed for based on sensitivities around soil type, soil density factors and treatment process \AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Pavision 20, 20 Sen 2016

Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

The lining system has been designed to extend for the full extent of the footprint area and ties in to the capping layers such that the top of cap meets the outside top of the surrounding bunds. The approximate extent of the containment cell is 80 metres in the east-west direction and 114 metres north-south. This is shown in the conceptual design drawings in **Appendix A**.

The leachate storage tank has been located within the bund for tank 226 which provides in the order of 6,000 m<sup>3</sup> of bund storage in case of tank failure which is far in excess of the minimum volume required of 33 m<sup>3</sup> as discussed in **Section 4.5**. If the area within tank bund 226 is required for other uses or required to be removed, the bunded area can be reduced as required by the construction of a bunded area in the immediate vicinity of the leachate storage tank.

### 4.3.2 Earthworks

Due to the shallow groundwater level, excavation in the existing ground surface has been minimised as far as practicable to minor excavation in the sump bases. The sump bases have been depressed to create a storage volume to minimise continuous pumping of leachate and/or inundation of large areas of the liner with leachate. The sump base is depressed approximately 500 mm in to the existing surface in the area of the two sumps.

### 4.3.3 Liner Design and Grading

The liner surface grades have been created by the placement of sub-base fill which mirrors the top of liner surface. This creates a liner subgrade which allows placement of lining layers in continuous thicknesses across the cell floor. The sub-base fill varies in thickness from zero in the valleys along the western side of the cell and grades up to the east at 2% longitudinal grades in the valleys. The transverse grades in to the valleys have been designed at 3% grades as required by the Landfill Guidelines (EPA, 2016). The liner surface grades are shown on drawing CV-003 in **Appendix A**.

The liner design, or leachate barrier system, has been designed in accordance with the Landfill Guidelines (EPA, 2016) and is described in **Section 4.4**.

### 4.3.4 Leachate Collection System

The primary leachate collection layer is the 300 mm depth aggregate layer above the primary liner components as described in **Section 4.4**. This layer provides a drainage pathway along the liner surface to the valleys as described in **Section 4.3.2**. The valleys have been designed with a perforated leachate collection pipe which falls at a 2% grade to the leachate collection sumps. Within the leachate collection sumps a float switch activated submersible pump transfers the collected leachate to the leachate storage tank via a rising main. The float switch would be set with a cut in and cut out level switch for the pump such that the pump cuts out at the sump floor level and cuts in when the leachate level reaches the top of the sump area to contain leachate within the sump. The system conceptual layout plan is shown in drawing CV-003 in **Appendix A**.

The secondary leachate collection system/leak detection layer comprises a geonet drain which flows along surface grades in the same manner as the primary collection system. A geonet has been adopted for this layer for ease of construction as it is problematic installing lining components above an aggregate drain layer. A separate inspection point comprising a pipe riser from the secondary leachate collection/leak detection layer would be constructed behind the primary liner and extended to the surface in the vicinity of the main collection sump. The detailed design shall ensure no cross leakage between the two collection systems to ensure that leachate collected in the secondary layer is from leakage through the liners rather than cross leakage between the collection systems.

### 4.3.5 Cap Design and Grading

The top of cap grading has been designed such that the top of cap meets the outer crest of the surrounding bunds except for the eastern side where the cap extent is contained outside the 250 m buffer to the National Park. This ensures that Site infrastructure such as the fire water ring main and the roadways to the west of the proposed containment cell are not affected by the cell construction. A surface grade of 20% has been adopted for the cap surface grading as required by the Landfill Guidelines and described in **Section 4.9**. This grade rises from the outer crest of the bund to a peak approximately central along the cell. The cap grading plan and cross sections are shown in **Appendix A**, drawings CV-004 and CV-005, respectively.

As noted on drawing CV-005, the final height of the cap would be determined during the waste placement and would be dependent on the final volume of waste generated from the site clean-up works. The cap grading plan as shown provides a total airspace of 24,800 m<sup>3</sup> which is well above the estimated 15,300 m<sup>3</sup> required and provides further contingency where, for instance, daily cover utilises soils rather than tarpaulins or similar methods \\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 - 29-Sep-2016

Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

which do not require significant airspace. The final height of the top of waste would be determined following completion of the ACS excavation works. Where the total airspace void is not required, the waste volumes and placement should be monitored to ensure the final surface has a minimum grade of 5% fall to the outer edges as shown on drawing CV-005. This approach has been adopted to cater for a variable volume of ACS, while providing sufficient airspace for all contingencies.

The cap make up has been designed in accordance with the Landfill Guidelines (EPA, 2016) and is described in Section 4.9.

#### 4.4 Leachate Barrier System

| Solid Waste Landfill Guidelines Required Outcomes                                                                                                                                                                                                                                                                                                                                                 | Report<br>Section |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| The landfill must have a leachate barrier system to contain and prevent the contamination of surface water and groundwater over the life of the landfill.                                                                                                                                                                                                                                         | 4.3.3<br>4.4      |
| Pollutants with the potential to degrade the quality of groundwater must not migrate through the strata to any point beyond the boundary of the premises or beyond 150 m from the landfill footprint, whichever is smaller. If this occurs, additional engineering controls may be required to prevent further pollutant migration. It may also be necessary to remediate the existing pollution. | 4.3.3<br>4.4      |

As per the Landfill Guidelines (EPA, 2016), the leachate barrier system for the Restricted Solid Waste containment cell would be a dual barrier system addressing the requirements listed in Table 14.

| Cell Stage               | Leachate Barrier System (from top to bottom)                                                                                                                                                                                                                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design /<br>Construction | A separation geotextile would be placed above the drainage layer to reduce the ingress of fines from the overlying waste.                                                                                                                                                                                                                    |
|                          | Primary leachate collection layer:<br>- 300 mm think gravel layer containing collection pipework.                                                                                                                                                                                                                                            |
|                          | A protection or cushion geotextile to protect the flexible membrane liner from damage by construction equipment and overlying materials.                                                                                                                                                                                                     |
|                          | <ul> <li>Primary barrier:</li> <li>A composite liner comprising: <ul> <li>an upper geomembrane liner in the form of a high density polyethylene (HDPE) liner at least 2 mm think.</li> <li>a lower geosynthetic clay liner (GCL) with a hydraulic conductivity of less than 5 x 10<sup>-11</sup> m/s.</li> </ul> </li> </ul>                 |
|                          | Secondary leachate collection layer:<br>- A geonet drainage/leak detection layer.                                                                                                                                                                                                                                                            |
|                          | <ul> <li>Secondary barrier to detect and remove any leakage through the primary barrier:</li> <li>installed below or outside the primary barrier.</li> <li>contain either a single compacted clay liner 1,000 mm thick with a saturated hydraulic conductivity less than 1 x 10<sup>-9</sup> m/s, or a composite geomembrane/GCL.</li> </ul> |
|                          | A compacted sub-base 200 mm thick to provide a firm, stable, smooth surface of high strength on which to install the liner.                                                                                                                                                                                                                  |
|                          | The leakage rate through the dual barrier system would be less than 1 L/ha/day of leachate for a maximum level of leachate of 300 mm over the upper liner.                                                                                                                                                                                   |
|                          | Material properties and specifications would be as for general solid waste landfills. Materials would be used that would not be compromised by chemicals in the restricted solid waste leachate.                                                                                                                                             |
|                          | *Have a base gradient of greater than 2% in the longitudinal direction and greater than 3% in the transverse directions.                                                                                                                                                                                                                     |

\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnel\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

| Cell Stage | Leachate Barrier System (from top to bottom)                                                                                                                                  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | *The waste cells should be wholly above the highest historically recorded groundwater table at all times. Alternatively, the cell can be sited partly or wholly above ground. |

\*required specifically for restricted solid waste cell design as per Section 1.1 of the Solid Waste Landfill Guidelines (EPA, 2016)

Materials used in the construction of the containment cell, for example geomembranes and gravel drainage, would be designed in accordance with the requirements provided in the Landfill Guidelines (EPA, 2016). The proposed liner system is illustrated in **Figure 3** below.

#### Figure 3 Proposed Containment Cell Liner



### 4.5 Leachate Management System

| Solid Waste Landfill Guidelines Required Outcomes                                                                                                                                         | Report<br>Section |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Collected leachate must be stored in appropriately sized dams or tanks and disposed of so as not to cause environmental harm.                                                             | 4.3.4<br>4.5.1    |
| There must be sufficient leachate disposal capacity to prevent the build-up of leachate and thereby mitigate potential impacts related to water pollution and offensive odours.           | 4.5.2             |
| Untreated leachate must not be disposed to off-site water or land, used for dust suppression, or used to supply the water needs of process conducted at the landfill, such as composting. | 4.5.2             |

The existing Oily Water Sewer System (OWSS) at the Site collects process effluent and rainfall runoff from areas of the Site where there is potential for interaction of water streams with petroleum products. Oily water is collected in the OWSS and is transferred to the wastewater treatment plant. Stormwater from within the containment cell area bunds would be directed through the OWSS, via a leachate storage tank. Following completion of final capping, only leachate would be directed to the leachate tank.

Based on the water balance model conducted and discussed in **Section 4.10** the following leachate management system is considered appropriate for the containment cell.

### 4.5.1 Storage

The design, construction and operation of a leachate storage system shall meet the following requirements:

- The tank must have sufficient leachate storage volume, as determined by the water balance model discussed in **Section 4.10**.
- The tank (if aboveground) and associated connection points must be surrounded by a bund with a capacity of at least 110% of the tank.

Based on the water balance model conducted in **Section 4.10**, the highest daily leachate generation is estimated to be 30 m<sup>3</sup>. Therefore the leachate storage tank would be designed to hold a minimum of 30 kL. Leachate from the storage tank would be directed to the existing OWSS, which transports oily water to the existing on-site Waste Water Treatment Plant (WWTP) as outlined in the following section.

### 4.5.2 Treatment and Disposal

Sufficient leachate disposal capacity must be identified and used to prevent the build-up of leachate and an increase in the risks of water pollution and offensive odours.

Leachate from the containment cell would be treated at the Kurnell WWTP, in accordance with EPL 837. The treatment process utilises physical, chemical and biological treatment to treat the wastewater. Under the current EPL conditions, all wastewater must be treated using the biotreator in the WWTP or the oil-water separators/induced air floatation system prior to discharge at Yena Gap.

Section O6.4 of the EPL states that; "the 'operational maximum treatment capacity' for the biotreater wastewater treatment plant is notionally 600 kL/h. It may be less than 600 kL/h depending on the number of "healthy" organisms in the biotreater wastewater treatment plant and the volume of wastewater stored in the equalisation tank".

The Site EPL requires that treated wastewater discharge quality monitoring be conducted at Yena Gap (Disharge Point 27) to determine compliance with concentration limits. The discharge limit for Point 27, monitoring frequency and sampling method is outlined in the EPL.

Leachate generated from the proposed containment cell would have quality characteristics similar to the existing stormwater runoff from the pipeways areas of the Site, and therefore be suitable for treatment within the WWTP. As noted in **Section 4.10** the maximum leachate generation from the cell in one month is expected to be approximately 900 kL. Given the capacity of the existing WWTP (600 kL/h), the leachate generated from the containment cell should be readily accommodated within the existing WWTP. This will be confirmed during the detail design of the containment cell.

### 4.6 Water Management

| Solid Waste Landfill Guidelines Required Outcomes                                                                                       |       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Controls must be implemented to minimise erosion and reduce the sediment load (suspended solids) of stormwater discharge from the site. | 4.6.1 |  |  |  |  |

### 4.6.1 Stormwater Management

The Site is divided into seven stormwater catchments. The proposed location of the containment cell is located in Zone F, in the south eastern corner of the Site, which predominately comprises relatively undeveloped land and a small area of tank compound, the landfarm area, a recycling area and a sludge lagoon. Stormwater from the following areas would be discharged off-site in accordance with the Site's Stormwater Management Plan:

- Areas outside the containment cell boundary, which are currently managed; and
- Areas of the containment cell which have been capped and revegetated.

Stormwater from the active areas of the containment cell would be discharged to the WWTP for treatment prior to discharge (refer to **Section 4.5**).

The Site has a Stormwater Management Plan (Caltex, 2011), which describes the existing stormwater monitoring system which would capture potential excess sediment loads and/or contamination potentially being generated by stormwater runoff from the containment cell area. Stormwater runoff from unvegetated areas of the containment cell would be managed in accordance with the requirements in *Managing Urban Stormwater: Soils and Construction Volume 1* (NSW Department of Housing, 2004), and *Managing Urban Stormwater: Soils and Construction Volume 2B Waste Landfills* (NSW DECC, 2008a).

### 4.6.2 Flooding

Appendix D of the SEE for the Kurnell Refinery Demolition (URS, 2014) provides a full assessment of the potential impacts of flooding at the Site.

The report found that the Site is generally elevated above the surrounding low lying areas on the western and northern boundaries, and the onsite bunding around petroleum products storage areas effectively increases the flood height that would need to be present for any interaction between petroleum products and flood waters to occur. The containment cell concept design has been prepared to incorporate the existing bund walls.

SSD 5544 MOD 1, management and mitigation measures (MMM) F7 states that:

"Caltex shall undertake a flood study, commencing within 3 months of completion of demolition works that assesses potential flood risks from the Kurnell Terminal to the Kurnell township, with a particular emphasis on the impacts from surface water entering the Site from land to the east and south of the Site and whether current diversion methods are appropriate".

Demolition works are scheduled to be completed in late 2017.

### 4.6.3 Groundwater Monitoring

The Site has a quarterly groundwater monitoring program under EPL 837, which includes 39 permanent monitoring wells. Given the impact to groundwater from historical operations and activities undertaken at Site, monitoring of impacts to groundwater from the containment cell would potentially be incorporated into the existing monitoring program.

As part of the EIS a groundwater impacts assessment would be undertaken. Based on the findings of this study additional groundwater wells may be installed to monitor potential impacts to groundwater from the containment cell. **Figure 4** shows the current distribution of groundwater monitoring wells around the proposed containment cell location.

# Figure 4 Kurnell Groundwater Monitoring Bores and Flow in Close Proximity to the Containment Cell (Source: Coffey (2015a), Coffey (2015b))



### 4.7 Landfill Gas Management and Monitoring

| Solid Waste Landfill Guidelines Required Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Report<br>Section |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| <ul> <li>Landfill gas management practices must be adopted to:</li> <li>Minimise emissions of untreated landfill gas to air and through sub-surface strata and services;</li> <li>Minimise greenhouse gas emissions;</li> <li>Minimise emission of offensive odour;</li> <li>Minimise the explosive risk to humans from gas build up in confined spaces;</li> <li>Ensure that, whenever feasible, landfill gas is sustainably utilised for energy recovery; and</li> <li>Minimise emissions of air pollutants from the combustion of landfill gas in flaring or electricity-generating equipment.</li> </ul> | 4.7<br>4.8.1      |
| A landfill gas monitoring program must be established to demonstrate the achievement of these outcomes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7               |
| Appropriate response action must be taken if the trigger limit values specified in the guidelines are exceeded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                 |

The landfill gas assessment is based on the following assumptions:

- Contaminated soils are predominately sands;
- That there would be a minimum of 1.6 m minimum of capping (as per Section 4.9);
- TPH composition has been generated based on soil sampling provided in the Pipeways Waste Classification Report (AECOM, 2016).

Vapour from the waste, potentially affecting human receptors, will be the main source - pathway – receptor link requiring further consideration. Under the *NEPM Schedule B1, Guideline on Investigation Levels for Soil and Groundwater*, petroleum hydrocarbons have been categorised into the following groups: F1, F2, F3 and F4, as shown in **Table 15**. The potential for hydrocarbons to generate a volume of gas which may require capture is discussed in **Table 16**.

### Table 15 Health Screening Levels Fractions and Corresponding Equivalent Carbon Range (source: Table 1, NEPM B2)

| Fraction number | Equivalent carbon number range     |
|-----------------|------------------------------------|
| F1              | $C_{6} - C_{10}$                   |
| F2              | >C <sub>10</sub> - C <sub>16</sub> |
| F3              | >C <sub>16</sub> – C <sub>34</sub> |
| F4              | >C <sub>34</sub> - C <sub>40</sub> |

Table 16 Gas Generation Considerations for TPH

| TPH<br>fraction | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1              | $C_6 - C_{10}$ warrant further investigation, as they comprise volatile compounds BTEXN. These compounds were present in the soil; <b>therefore further assessment is warranted (see below).</b>                                                                                                                                                                                                                                                                                              |
| F2              | $C_{10} - C_{16}$ also comprise volatile fractions, however, in sand at >2 m, Schedule B1 notes that they are NL (non limiting) meaning at any concentrations, they " <i>can't result in an unacceptable vapour risk</i> " (p. 7). Therefore no further assessment is warranted.                                                                                                                                                                                                              |
| F3              | <ul> <li>From NEPM B2, p.9:<br/>Chemicals in the &gt;C<sub>16</sub>-C<sub>34</sub> and &gt;C<sub>34</sub>-C<sub>40</sub> fractions are non-volatile and therefore not of concern for vapour intrusion, however, exposure can be via direct contact pathways (dermal contact and incidental ingestion and inhalation of soil particles). Direct contact HSLs for these fractions can be found in Friebel and Nadebaum (2011a).</li> <li>Therefore, no further assessment warranted.</li> </ul> |

\\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016

Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

| TPH<br>fraction | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F4              | <ul> <li>From NEPM B2, p.9:<br/>Chemicals in the &gt;C<sub>16</sub>-C<sub>34</sub> and &gt;C<sub>34</sub>-C<sub>40</sub> fractions are non-volatile and therefore not of concern for<br/>vapour intrusion, however, exposure can be via direct contact pathways (dermal contact and incidental<br/>ingestion and inhalation of soil particles). Direct contact HSLs for these fractions can be found in<br/>Friebel and Nadebaum (2011a).</li> <li>Therefore, no further assessment warranted.</li> </ul> |

### 4.7.1.1 Assessment of C<sub>6</sub> – C<sub>10</sub> Fraction

Based on the depth of soil cover overlying the waste ( $\geq$ 1.6 m) and the composition of the contaminants, the F1 fraction and key constituents, namely benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN) were further considered.

|              | HSL A & HSL B<br>Low - high density<br>residential |                |               |      | HSL C<br>recreational / open space |                     |                |        | HSL D<br>Commercial / Industrial |                |                |     |                                                   |
|--------------|----------------------------------------------------|----------------|---------------|------|------------------------------------|---------------------|----------------|--------|----------------------------------|----------------|----------------|-----|---------------------------------------------------|
| CHEMICAL     | 0mto<br><1m                                        | 1 m to<br><2 m | 2 m to<br><4m | 4 m+ | 0 m to<br><1 m                     | 1 m to<br><2 m      | 2 m to<br><4 m | 4 m+   | 0 m to<br><1 m                   | 1 m to<br><2 m | 2 m to<br><4 m | 4m+ | Soil<br>saturation<br>concentrati<br>on<br>(Csat) |
|              |                                                    |                |               |      | ()<br>                             | SAN                 | D              |        |                                  |                |                |     |                                                   |
| Toluene      | 160                                                | 220            | 310           | 540  | NL                                 | NL                  | NL             | NL     | NL                               | NL             | NL             | NL  | 560                                               |
| Ethylbenzene | 55                                                 | NL             | NL            | NL   | NL                                 |                     |                |        | - V                              | NL             | NL             | NL  | - 64                                              |
| Xylenes      | 40                                                 | 60             | 95            | 170  | NL                                 | NL Only for further |                |        |                                  | NL             | NL             | NL  | 300                                               |
| Naphthalene  | 3                                                  | NL             | NL            | NL   | NL.                                | 7                   | conside        | ration |                                  | NL             | NL             | NL  | 9                                                 |
| Benzene      | 0.5                                                | 0.5            | 0.5           | 0.5  | NL                                 |                     | _              |        | -                                | 3              | 3              | 3   | 360                                               |
| F1m          | 45                                                 | 70             | 110           | 200  | NL                                 | NL                  | NL             | NL     | 260                              | 370            | 630            | NL  | 950                                               |
| F2:10;       | 110                                                | 240            | 440           | NL   | NL                                 | NL                  | NL             | NL     | NL                               | NL             | NL             | NL  | 560                                               |

Table 1A(3) Soil HSLs for vapour intrusion (mg/kg)

The majority of  $C_6 - C_{10}$  (less BTEX) were non-detect with a peak concentration of 19 mg/kg detected. This peak detection is below the Health Screening Level (HSL) of 630 mg/kg. Therefore of  $C_6 - C_{10}$  does not warrant further consideration.

Of BTEXN, only benzene requires consideration with a HSL of 3 mg/kg. All benzene concentrations were reported at less than the reporting limit of 0.2 mg/kg. Therefore benzene, and toluene, xylene, ethylbenzenes and naphthalene do not require further consideration.

On the basis that the impacted material:

- Is mostly sands;
- Has a 1.6 m minimum fill covering the waste;
- Comprises TPH composition of F1 at less than 630 mg/kg; and
- Comprises benzene concentrations less than 3 mg/kg;

then further evaluation in relation to risks to human health associated with vapour emanating from these compounds is not considered warranted when using *NEPM B1 Guideline on Investigation Levels For Soil and Groundwater.* Consequently a landfill gas capture system to protect people from TRH vapour issues is not considered necessary.

If required, an assessment of emissions following closure of the containment cell may be undertaken to demonstrate the low emission of gas.

### 4.8 Amenity Issues: Odour, Dust, Noise, Litter and Fire

| Solid Wa                                                                       | Section                                                                                                                        |       |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| The landfill must not adversely affect amenity in the locality, in particular: |                                                                                                                                |       |  |  |
| •                                                                              | Offensive odour impacts must not occur at off-site locations                                                                   | 4.8.1 |  |  |
| •                                                                              | Emissions of nuisance dust and other particulate matter beyond the landfill<br>boundaries must be minimised                    | 4.8.2 |  |  |
| •                                                                              | Excessive noise must not be generated by activities at the Site                                                                | 4.8.3 |  |  |
| •                                                                              | Local amenity must not be degraded by littler from the landfill or by mud or litter attached to vehicles leaving the landfill. | 4.8.4 |  |  |
| •                                                                              | The risk of fire at the site must be minimised and the site must be adequately prepared in the event of a fire.                | 4.8.5 |  |  |

### 4.8.1 Odour Control

Given the nature of the waste proposed to be disposed of in the containment cell, potential impacts from odour are considered unlikely.

### 4.8.2 Dust Emissions

The ACS will be treated in accordance with requirements of asbestos waste. Dust generation must be minimised during construction, operation and closure / rehabilitation of the containment cell. Assessment of the potential impacts of adverse air quality impacts and the appropriate mitigation measures will be addressed in an air quality assessment as part of the EIS.

To minimise emissions of dust from the containment cell the following measures may be implemented:

- Minimise the area of exposed soils
- Revegetate completed areas as soon as possible. This may be addressed through a staged approach.
- Spray water for dust suppression, particularly soils contaminated with asbestos.

### 4.8.3 Noise Control

Based on the location of the containment cell at the furthest point from residential and commercial receivers and the nature of the works bring consistent with demolition works currently being undertaken on Site, potential noise impacts are unlikely to be significant. Potential noise generating activities will be carried out to mitigate potential noise impacts.

### 4.8.4 Litter and Debris Control

Given the nature of the waste proposed to be disposed of in the containment cell impacts from litter and debris is considered unlikely.

### 4.8.5 Fire Prevention

The containment cell would be managed in accordance with the Site's Emergency Response Plan.

#### 4.9 **Cover, Capping and Revegetation**

| Solid Waste Landfill Guidelines Required Outcomes                                                                                                                                                                                                                                                      | Section |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Landfilled waste must be covered regularly during operations with a suitable material to minimise odour, dust, litter, the presence of scavengers and vermin, the risk of fire, rainwater infiltration in the waste (and therefore the amount of leachate generated) and the emission of landfill gas. | 4.9     |
| All completed landfill cells must be capped and revegetated as soon as practicable after the final delivery of waste to the cell. The final capping must:                                                                                                                                              | -       |
| <ul> <li>Reduce rainwater infiltration into the waste and thus minimise the generation of<br/>leachate (infiltration from the base of the final cap will be less than 5% of the annual<br/>rainfall).</li> </ul>                                                                                       | 4.9     |
| Stabilise the surface of the completed part of the landfill                                                                                                                                                                                                                                            | 4.9     |
| Reduce suspended and contaminated runoff                                                                                                                                                                                                                                                               | 4.9     |
| Minimise the escape of untreated landfill gas                                                                                                                                                                                                                                                          | 4.9     |
| <ul> <li>Minimise odour emissions, dust, litter, the presence of scavengers and vermin, fauna<br/>and flora and the risk of fire</li> </ul>                                                                                                                                                            | 4.8.1   |
| • Prepare the site for its future use; this includes protecting people, flora and fauna on<br>or near the site from exposure to pollutants still contained in, or escaping from, the<br>landfill.                                                                                                      | 4.9     |
| During the post-closure period, the occupier must monitor the integrity and performance of the final cap.                                                                                                                                                                                              | 4.9     |

The requirements for cover and capping (top to bottom) of the containment cell has been provided in Table 17. The cover and capping design has been provided generally in accordance with the requirements of the Landfill Guidelines, for a restricted landfill cell with the exceptions as noted.

| Cell Stage                  | Site Capping and Revegetation Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation                   | <ul> <li>Under the Waste Regulation 2014, asbestos waste must be covered with virgin excavated natural material. The depths required covering are:</li> <li>Immediate covering with 150 mm of cover</li> <li>500 mm of cover at the end of each day</li> </ul>                                                                                                                                                                                                                                                                                                                                                               |
|                             | It is proposed to use temporary plastic sheeting which would be placed immediately over the ACS after it is placed in the containment cell. The use of suitably rigid plastic sheeting will minimise the generation of dust from the placement works in a similar manner to the use of VENM. Prior to placement of the next load of ACS and at the start of each day's filling works, the plastic sheeting would be stripped back to allowing filling operations to continue. At the end of each day's filling operation the plastic sheeting would be secured in place to prevent it being lifted or displaced due to wind. |
| Closure /<br>Rehabilitation | <ul> <li>Under the Protection of the Environment Operations Waste Regulation 2014 (the Waste Regulation 2014), asbestos waste must be covered with virgin excavated natural material. The depths required covering are:</li> <li>Final cover of at least 3 m (in the case of friable asbestos material). Refer discussion below for justification of alternative capping design.</li> </ul>                                                                                                                                                                                                                                  |
|                             | <ul> <li>A revegetation layer:</li> <li>At least 1000 mm thick.</li> <li>Clean soils and vegetation with root systems that will not penetrate into lower layers.</li> <li>The upper 200 mm will be a topsoil layer, which can include compost to help with vegetative establishment and growth.</li> <li>Promote water removal by evapotranspiration and runoff.</li> </ul>                                                                                                                                                                                                                                                  |

| Cell Stage                                                                                                                                                                                                                                                                                                                                                                                     | Site Capping and Revegetation Requirements                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                | A separation geotextile will be placed above the infiltration drainage layer to prevent ingress of fines from the overlying soil. The separation geotextile will be designed as a marker layer to identify that asbestos is buried below this point to ensure the Site is prepared for potential future uses and protects people from inadvertently excavating the cell.                                        |
| <ul> <li>An infiltration drainage layer (required for restricted solid waste landfills):         <ul> <li>300 mm thick and would consist of hard, strong, durable and clean gravel with hydraulic conductivity to water of greater than 1 x 10<sup>-4</sup> m/s.</li> </ul> </li> <li>A protection geotextile to protect the flexible membrane liner from damage by over materials.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>A seal-bearing surface:</li> <li>Consisting of a property designed and engineered layer of material at least 300 mm think to support the sealing layer.</li> <li>The material would meet recognised specifications for engineered materials, such as QA Specification 3071: Selected Material for Formation (NSW Roads and Maritime Services, December 2011), as amended from time to time.</li> </ul> |

To facilitate runoff and minimise ponding of water, the cap will have a gradient of greater than 5% to defined drainage points. However, to reduce the risk of erosion, the cap has been restricted to a gradient of  $\leq 20\%$ .

A construction quality assurance program will be implemented during construction of final capping.

Capping will be implemented progressively throughout the active filling stage of the containment cell and will not be left to the post-closure period.

The proposed capping is illustrated in Figure 5 below.

#### Figure 5 Proposed Containment Cell Cap



\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnel\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

The Landfill Guidelines and Waste Regulations require 3 m of VENM cover over asbestos contaminated waste however they do not require a geosynthetic liner in the cap. The proposed cap design, as described above, includes 1.6 m of soil and aggregate layers and two layers of geosynthetic including a GCL and an HDPE, as shown in **Figure 5**. The detailed design will include the design of the connection between the capping and liner layers, in particular the welding of the upper and lower HDPE liners, thereby fully containing the waste within HDPE and other layers. The 3 m of VENM over asbestos containing waste is prescribed in the Waste Regulations to ensure no friable particles are released from waste. The 1.6 m of soil and aggregate and the two layers of geosynthetic are considered an appropriate alternative to 3 m of VENM to contain asbestos fragments. In addition a marker layer with be included as the separation geotextile to reduce the risk of the cap being removed.

Following closure of the containment cell, post closure monitoring would include:

- Regular inspections for deterioration of the capping's condition, including erosion, cracking, dead or stressed vegetation, ponding, differential settlement, slope stability, and damage to any pipes, drains and other works installed on the final capping.
- Repair and/or replacement of portions of the final capping found to be damaged.
- Monitoring of leachate and rainfall volumes.

### 4.10 Water Balance

As per Section 2.3 of the Landfill Guidelines (EPA, 2016), a water balance model should be conducted to estimate the required leachate storage capacity. The water balance model was prepared in using default rainfall infiltration percentages provided for small sites:

- 20% infiltration for final capping;
- 100% infiltration for an active area with daily covering.

No intermediate covering has been modelled as it is not expected that any waste filled areas will be left uncapped for a period greater than 90 days.

Based on this modelling the greatest leachate generated in one month was 893  $m^3$ , with an average monthly generation of 537  $m^3$ .

|                            | Highest Daily | Highest leachate | Average monthly | Annual leachate |
|----------------------------|---------------|------------------|-----------------|-----------------|
|                            | leachate      | generated in one | leachate        | generation post |
|                            | generation    | month            | generation      | closure         |
| Leachate (m <sup>3</sup> ) | 30            | 893              | 537             | 3,160           |

#### Table 18 Water Balance Model Results

### 4.11 Drawings and Technical Specifications

The conceptual design described in this report is depicted in the drawings included as Appendix A.

Draft technical specifications have been included in **Appendix B** for key components of the containment cell barrier system. These specifications will be finalised as part of the detail design stage of the project

### 4.12 Schedule of Quantities

Based on the Conceptual Design described in this report and on the drawings in **Appendix A**, a preliminary schedule of quantities for materials and works required to construct the containment cell has been provided in **Table 19**.

| ITEM | DESCRIPTION                                                                                                  | UNIT             | QUANTITY<br>(estimate) |
|------|--------------------------------------------------------------------------------------------------------------|------------------|------------------------|
| 1    | Mobilisation                                                                                                 |                  | (estimate)             |
| 1.1  | Establishment to site of all equipment, goods and personnel                                                  | Item             | 1                      |
| 1.2  | Demobilisation from site of all equipment, goods and personnel                                               |                  | 1                      |
| 1.3  | Survey, set-out and as built reporting                                                                       |                  | 1                      |
| 2    | Lining Works                                                                                                 |                  |                        |
|      | Subgrade and Secondary Barrier Components                                                                    |                  |                        |
| 2.1  | Purchase, supply, transport to site, placement and compaction of subgrade fill to design levels and grades   | m <sup>3</sup>   | 11,136                 |
| 2.2  | Purchase, supply, transport to site and placement of GCL                                                     | m²               | 9,280                  |
| 2.3  | Purchase, supply, transport to site and placement of HDPE                                                    | m <sup>2</sup>   | 9,280                  |
| 2.4  | Purchase, supply, transport to site and placement of geocomposite drain/leak detection layer                 | m²               | 9,280                  |
|      | Primary Barrier Components                                                                                   |                  |                        |
| 2.5  | Purchase, supply, transport to site and placement of GCL                                                     | m²               | 9,280                  |
| 2.6  | Purchase, supply, transport to site and placement of HDPE                                                    | m²               | 9,280                  |
| 2.7  | Purchase, supply, transport to site and placement of geofabric protection laver                              |                  | 9,280                  |
| 2.8  | Purchase, supply, transport to site and placement of 300 mm depth                                            |                  | 2,784                  |
| 2.9  | Purchase, supply, transport to site and placement of geofabric separation laver                              |                  | 9,280                  |
| 3    | Capping Works                                                                                                |                  |                        |
| 3.1  | Grading and compaction of the interim cover soils to form the 300 mm depth seal bearing surface              | m²               | 10,240                 |
| 3.2  | Purchase, supply, transport to site and placement of GCL                                                     |                  | 10,240                 |
| 3.3  | Purchase, supply, transport to site and placement of HDPE                                                    |                  | 10,240                 |
| 3.4  | Purchase, supply, transport to site and placement of geofabric protection layer                              | m²               | 10,240                 |
| 3.5  | Purchase, supply, transport to site and placement of 300 mm depth                                            |                  | 3,072                  |
| 3.6  | Purchase, supply, transport to site and placement of geofabric separation laver                              |                  | 10,240                 |
| 3.7  | Purchase, supply, transport to site, placement and grading of 800 mm clean soils to design levels and grades |                  | 8,192                  |
| 3.8  | Purchase, supply, transport to site, placement and grading of 200 mm topsoil to design levels and grades     | m <sup>3</sup>   | 2,048                  |
| 3.9  | Supply and establishment of vegetation over capping surface                                                  | m²               | 10,240                 |
| 4    | Leachate Control                                                                                             |                  |                        |
| 4.1  | Supply and install 30 kL leachate storage tank                                                               | Item             | 1                      |
| 4.2  | Supply and install leachate collection pipework on cell floor within drainage aggregate                      | Linear<br>meters | 500                    |

Schedule of Quantities - Kurnell Containment Cell Table 19

\\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016 Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

(Lm)

| ITEM | DESCRIPTION                                                                                           | UNIT                | QUANTITY<br>(estimate) |
|------|-------------------------------------------------------------------------------------------------------|---------------------|------------------------|
| 4.3  | Supply and install a leachate collection sump, sump pump and pipework to storage tank                 | Item                | 1                      |
| 4.4  | Supply and install a leak detection sump, sump pump and pipework to storage tank                      | Item                | 1                      |
| 4.4  | Supply and install leachate transfer pipework from storage tank to WWTP                               | Provisional<br>Item | 1                      |
| 5    | Drainage & Miscellaneous Works                                                                        |                     |                        |
| 5.1  | Sediment control during construction works                                                            | Item                | 1                      |
| 5.2  | Form stormwater drains around the containment cell perimeter and outlet to current stormwater outlets | Lm                  | 300                    |

The following assumptions have been made during preparation of the schedule of quantities:

- This estimate is an indicative, high level estimate of the material quantities involved with the construction of a cell only. It is based on the concept design prepared and reflects the basic lining and capping components of the cell. Further works which are not included may be required following detailed design phase of the Project.
- The tanks and associated pipework and infrastructure are not included in this estimate and will be removed by others.
- The existing concrete and sand bund are considered suitable for the construction of lining systems directly over.
- The extent of the cell would be within the bunds surrounding tanks 224, 225, 333, 334 and 335. The leachate storage tank would be located within the bund surrounding tank 226 and would not need any further lining or engineering works.
- The volumes used are based on a site survey supplied by Caltex Australia Pty Ltd (email dated 05/04/16).
- The scope of pipework connection from the storage tank to the existing OWSS is not known and a provisional item only has been allowed in this estimate.
- All volumes are in-situ, placed and compacted volumes.

28

### 5.0 Conclusion and Recommendations

### 5.1 Management of Hazardous Waste

Based on the assessment of the Hazardous Waste treatment options discussed in **Section 3.0**, the potential risk to human health and the environment and the cost effectiveness of each option, the preferred option for managing the Special Hazardous Waste from the pipeways was considered to be remediation via trommelling. Biopiling and off-site disposal were ranked second and third respectively. Therefore, it is recommended that a small scale pilot trial be conducted of intensive biopiling and trommelling to confirm the feasibility of treating the hazardous waste using these methods and determine which option is more suitable given the contaminant concentrations in the ACS.

### 5.2 Concept Design

The containment cell has been designed to create a maximum airspace capacity for up to 24,500 tonnes of ACS. The 24,500 tonnes has been determined based on the following:

- 10,600 tonnes of Special General Solid Waste;
- 3,100 tonnes of Special Restricted Solid Waste;
- 3,850 tonnes of Special Hazardous Waste, should treatment be conducted on-site to allow re-classification as either Special General Solid Waste or Special Restricted Solid Waste (as described in **Section 3.4**); and
- A 40% contingency<sup>9</sup> which allows for daily cover soils during waste placement if required.

Based on an average maximum wet density of 1.6 t/m<sup>3</sup>; a 24,500 tonne capacity containment cell would require a waste containment volume of approximately 15,300 m<sup>3</sup>.

The highest classification of waste contained within the containment cell would be Special Restricted Solid Waste. As such the containment cell has been designed in accordance with the requirements of a restricted landfill cell. The concept design of the proposed containment cell has been prepared generally in accordance with the Landfill Guidelines (EPA, 2016).

Due to the shallow groundwater level, excavation in to the existing ground surface has been minimised as far as practicable to minor excavation in the sump bases.

Following acceptance of the concept design by Caltex a detailed design would be prepared including specifications and drawings suitable for inclusion in a tender package for the construction of the containment cell.

<sup>&</sup>lt;sup>9</sup> Contingency has been allowed for based on sensitivities around soil type, soil density factors and treatment process. \\AUSYD1FP001.AU.AECOMNET.COM\Projects\604X\60488804\4. Tech work area\4.4 - Cell Concept Design\Final Report\Kurnell\_ACS Containment Cell Concept Design\_Final\_Rev2\_29092016.docx Revision 02 – 29-Sep-2016

Prepared for – Caltex Petroleum Australia Pty Ltd – ABN: 17 000 007 876

### 6.0 References

AECOM (2013) Caltex Kurnell (535) Pipeways Contamination Assessment / Characterisation - Stage 2 Report

AECOM (2016a) Pipeways Asbestos Waste Classification Report

AECOM (2016b) Kurnell ASC Management - Options Report

AECOM (2016c) Kurnell Terminal Geotechnical / ESA

Caltex (2011) Kurnell Terminal Stormwater Management Plan

Coffey (2015a) Caltex Refineries (NSW) Pty Ltd: Bi-annual Groundwater Monitoring Report, Caltex Refinery Process Plant Kurnell NSW

Coffey (2015b) Caltex Refineries (NSW) Pty Ltd: Spent Phosphoric Acid Limestone Pits, Groundwater and Surface Water Assessment

EPA (2014) NSW Environment Protection Agency Waste Classification Guidelines, Part 1: Classifying Waste, November 2014

EPA (2016) NSW EPA Solid Waste Landfill Guidelines

National Environment Protection (Assessment of Contaminated Land) Measure (NEPM) 1999, National Environment Protection Council Amendment 2013. Schedule B1, Guideline on Investigation Levels for Soil and Groundwater.

NSW Department of Housing (2004) Managing Urban Stormwater: Soils and Construction Volume 1

NSW DECC (2008a) Managing Urban Stormwater: Soils and Construction Volume 2B Waste Landfills

Protection of the Environment Operations Act (POEO) 1997, Schedule 1

SKM (2014), Management of Contaminated Soils in South Australia

URS (2014) Kurnell Refinery Demolition, Statement of Environmental Effects (SEE), SSD 5544 MOD1

US EPA (May 2004), How to Evaluate Cleanup Technologies for Underground Storage Tank Site, A Guide for Corrective Action Plan Reviewers, EPA 510-R-04-002, page IV-19 and IV-3

Vertasefli (2016), http://www.vertasefli.co.uk/our-solutions/expertise/stabilisation-and-solidification, viewed 18/05/16

Vertasefli (2016b), http://www.vertasefli.co.uk/our-solutions/expertise/soil-washing, viewed 18/05/16

# 7.0 Design Report Limitations

AECOM Services Pty Limited (AECOM) has prepared this Report in accordance with the usual care and thoroughness of the consulting profession for the use of Caltex Petroleum Australia Pty Ltd

Except as required by law, no third party may use or rely on this Report unless otherwise agreed by AECOM in writing.

To the extent permitted by law, AECOM expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this Report. AECOM does not admit that any action, liability or claim may exist or be available to any third party.

The report is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this Report.

It is prepared in accordance with the scope of work and for the purpose outlined in the Contract dated [19 February 2016].

This Report was prepared between April 2016 to July 2016 and is based on the conditions encountered and information reviewed at the time of preparation. AECOM disclaims responsibility for any changes that may have occurred after this time.

Where this Report indicates that information has been provided to AECOM by third parties, AECOM has made no independent verification of this information except as expressly stated in the Report.

AECOM assumes no liability for any inaccuracies in or omissions to that information.

This Report should be read in full. No responsibility is accepted for use of any part of this Report in any other context or for any other purpose or by third parties. This Report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the site.

Any estimates of potential costs which have been provided are presented as estimates only as at the date of the Report. Any cost estimates that have been provided may therefore vary from actual costs at the time of expenditure.

Appendix A

# Drawings and Technical Specifications

Appendix A Drawings

# KURNELL ASBESTOS CONTAMINATED SOIL MANAGEMENT PROJECT CIVIL DRAWINGS



SITE KEYPLAN

NOT FOR CONSTRUCTION

### AECOM

#### PROJECT

KURNELL ASBESTOS CONTAMINATED SOIL MANAGEMENT PROJECT CONCEPT DESIGN KURNELL NEW 2231

#### CLIENT

CALTEX AUSTRALIA PTY LTD

#### ENGINEERING

AECOM Services Pty. Ltd. A.B.N. 20 093 846 925 www.aecom.com

| DRAWING REGISTER |                                        |  |  |
|------------------|----------------------------------------|--|--|
| DRAWING NO.      | DRAWING TITLE                          |  |  |
| CV-001           | COVER SHEET AND DRAWING REGISTER INDEX |  |  |
| CV-002           | EXISTING CONDITIONS                    |  |  |
| CV-003           | PROPOSED TOP OF LINER DESIGN           |  |  |
| CV-004           | PROPOSED TOP OF CAP DESIGN             |  |  |
| CV-005           | CROSS SECTIONS                         |  |  |
| CV-006           | DETAILS                                |  |  |

| _                         | SW                               | I R           | IR     |  |
|---------------------------|----------------------------------|---------------|--------|--|
| DESIGNER CHECKED APPROVED |                                  |               |        |  |
| ISS                       | JE/REVISIO                       | ON            |        |  |
| _                         |                                  |               |        |  |
| -                         |                                  |               |        |  |
|                           |                                  |               |        |  |
| _                         |                                  |               |        |  |
| T2                        | 13.07.16                         | FINAL ISSUE   |        |  |
| T1                        | 21.06.16                         | DRAFT ISSUE   |        |  |
| UIX                       | DATE                             | DESCRIPTION   | •      |  |
|                           |                                  |               |        |  |
| 0<br>1:1                  | 1:<br>5000                       | 25 25<br>MBER | )<br>m |  |
| 0<br>1:5<br>PRC           | 1:<br>5000<br>DJECT NUM<br>88804 | 25 25<br>MBER | )<br>m |  |

60488804-DRG-CV-001













## Appendix B

# **Technical Specifications**

# Appendix B Technical Specifications

### PART 1 GENERAL

### 1.01 Scope of Work

The Works covered by this Specification include, but are not necessarily limited to the following:

- A Control of stormwater;
- B Site clearing;
- C The setting out of the Works to the lines and levels shown on the Drawings;
- D Removal of infrastructure in the area of works and disposal as directed by the Superintendent;
- E Filling with imported soils, site grading and compaction of landfill cell base;
- F Importation of suitable soils, placing and compaction of materials to form the landfill cell capping layers;
- G Construction of access ramp to within the cell for waste placement; and
- H Construction of surface water drains as shown on the Drawings.

### 1.02 Related Sections

- A. AS 1470 Health and Safety at Work Principles and Practices
- B. AS 1289 Methods of Testing Soils for Engineering Purposes
- C. AS 1141 Methods for Sampling and Testing Aggregates

### 1.03 Definitions

- A. Standard Density: As determined in accordance with AS 1289 E1.1.
- B. Modified Density: As determined in accordance with AS 1289 E2.1.
- C. Nominal Compaction: Material to be hand or machine bucket tamped, or trafficked by construction plant to prevent sloughing.
- D. Rippable Rock: The words "rippable rock" material shall describe material in excavations which can be ripped and excavated with a tracked dozer in good condition with matching hydraulic single shank ripper of combined mass of 48.5 tonnes (this refers to a CAT D9H dozer or its equivalent) operated by an experienced and competent operator, at a rate in excess of 75 m<sup>3</sup> (solid) per hour.
- E. Hard Rock: The words "hard rock" material shall describe material in excavations which cannot be ripped and excavated with a tracked dozer in good condition with matching hydraulic single shank ripper of combined mass not less than 48.5 tonnes (this refers to a CAT D9H dozer or its equivalent) operated by an experienced and competent operator, at a rate in excess of 75 cum (solid) per hour and shall include boulders greater than 0.8 cum in volume.
- F. The term "unsuitable material" shall only apply to weak deposits, excessively sandy gravel and pebble deposits and organic material below foundation level which, because of their inherent nature, cannot be satisfactorily reconditioned and are not suitable as a foundation, bedding or backfill material. Unsuitable material shall not be removed without the written instruction of the



Superintendent. Unsuitable material shall be treated as overburden and removed to stockpile by the Contractor using whatever equipment is required.

### PART 2 PRODUCTS

### PART 3 EXECUTION

### 3.01 Foundation Preparation

- A All standing water shall be drained or otherwise removed from the area before foundation preparation can commence.
- B After the removal of all excess material from the base area, the subgrade of the landfill cell shall be graded to conform to the lines and levels shown on the Drawings.
- C Prior to placement of sub-base soils the subgrade shall be compacted to 95% Standard Compaction.
- D Subgrade fill compaction testing shall be undertaken at a frequency of 1 test per 2,500 m<sup>2</sup>.
- F No fill shall be placed in any area without the written approval of the Superintendent.

### 3.02 Sub-Base & Seal Bearing Fill Placement and Compaction

### A. Surface Preparation

- 1 Before fill is placed in any area, the Superintendent shall be notified in writing with at least 48 hours notice so that they may inspect the material to confirm that the prior work meets the specified requirements.
- 2 All areas upon which fill is to be placed shall be scarified to a depth of 50 mm and rewetted prior to the placing of any fill to ensure a firm bond to the foundation. This applies to material exposed to drying for a period greater than twelve hours.
- 3 Soft spots shall be excavated as directed by the Superintendent and replaced with fill material and compacted in accordance with this specification. The Superintendent may require additional testing of the remediated area.

### **B.** Fill Placement and Compaction Standards

- 1 Fill material shall be spread and compacted in layers of uniform quality and thickness parallel to the longitudinal axis of the work and for the full width of the cross-section.
- 2 All fill earthworks shall be compacted to 95% of Standard Dry Density or 95% HILF density ratio unless otherwise stated on the Drawings at a frequency of 1 test per 2,500 m<sup>2</sup> or 1 test per 500 m<sup>3</sup> fill placed. Allowances shall be made for areas on the outer 500 mm of the shoulders of fill areas where 95% of Standard Compaction may not be achievable.
- 3 In all cases, measured moisture contents from samples taken from the liner and embankments shall be within -1% Dry to 3% Wet of optimum moisture content.
- 4 Suitable material shall be used for the construction of all fill works. Material can be sourced from off site and must contain an acceptable proportion of clay and/or silt i.e. clayey sand, sandy clay, silty sand or sandy silt. Fill proposed for use must be approved by the Superintendent before placement. Any material placed into the works, not approved and considered unsuitable by the Superintendent shall be removed, replaced with suitable material and re-compacted at the Contractor's expense.
- 5 The thickness of the layers (loose) shall be not greater than 250mm and the required degree of compaction must be achieved for the full depth of the layer.
- 6 Compaction to the required standard shall be a special operation requiring the use of a machine or machines specifically approved for the purpose (typically a pad foot roller). Compaction plant shall cover the entire area of each layer of fill and give each layer a uniform degree of effort.



7 All fill compaction earthworks shall be suitably maintained during the construction period. Where the compacted fill does not meet the specified requirements it shall be excavated, dried or re-wetted and re-compacted. Any fill or cut surface which has deteriorated through excessive drying, cracking, wetting, erosion or has been weakened or rutted at a point as a result of construction traffic shall be reconditioned in accordance with the requirements of this Specification.

### 3.04 Capping Clean Soil & Topsoil Layers

- A. The material used for the construction of vegetative layers shall comprise a clean soil, mulch and/or topsoil that can support vegetation growth on the landfill cap.
- B. Vegetative layers shall be imported from offsite sources and is not available onsite. The Contractor shall provide the Superintendent a report including, at a minimum, the following items about the material to be sourced:
  - i. Description and location of the source of material.
  - ii. Testing undertaken to indicate that it meets IWRG 621 requirements. If an investigation was previously undertaken at the site to assess potential contamination, the Contractor shall provide a copy of the report.
  - iii. Testing undertaken on the topsoil to analyse the nutrient content of the material and if the topsoil requires additional nutrients to support vegetation establishment (3 tests per source of material).
  - iv. Soil Classification by a NATA accredited laboratory (3 tests per source of material).

### 3.08 Leachate Drainage System

- 1 The Leachate Drainage material shall consist of a washed coarse aggregate layer sourced from off site and have the following recommended material properties:
  - Be nominal size between 20 to 50 mm and shall be free draining;
  - Have fines content less than 1%;
    - Should not contain limestone or other calcareous material that would be subject to chemical attack; and
  - Be approved by the Superintendent prior to use.
- 2 Where the above criteria are not met the aggregate shall achieve a hydraulic conductivity of not less than  $1 \times 10^{-3}$  m/s as shown by laboratory testing.
- 3 Three samples shall be collected from the source prior to importation to site for testing for the criteria listed above. Test results shall be provided to the Superintendent for approval prior to importation to site.
- 4 A trial pad shall be constructed to confirm the aggregate placement methodology does not damage the HDPE layer. The trial pad shall be a minimum of 10m x 10m and shall be placed using the same method proposed for full scale works. The HDPE shall be uncovered at the end of the trial to confirm no damage has occurred. The CQA officer shall inspect the exposed HDPE and confirm that no damage has occurred. A WMS shall be prepared based on the trial pad and utilised for the full scale works. The proposed WMA shall be approved by the CQA officer before full scale placement commences.
- 5 The leachate collection pipes comprise a 160 mm PE100 PN16 HPDE pipe with 10 mm holes drilled at approximately 100 mm centres as per drawing detail.



6 The leachate collection pipes shall be handled and stored in a manner that does not compromise the integrity of the pipes.

### 3.06 Anchor trench (for geomembrane liner)

Anchor trenches shall be excavated on the perimeter bunds to anchor the geosynthetic liners. The anchor trench shall be located at least 1.0 m from the inside crest of the bund.

The anchor trench shall be backfilled progressively with the soil material excavated to form the trench. The material shall be adequately moisture condition prior to backfill. The soil shall be tamped into place following membrane placement and moisture controlled where required. The GITA shall observe the compaction of the anchor trench backfill and provide comment on the compaction undertaken in the Level 1 as-built report.

### 3.05 Excavation

### A. General

1 All excavated areas to the landfill cell subgrade shall be cut to the depths, grades and lines as approved by the Superintendent. Grades and levels shall be established to minimise ponding of water in cut areas.

### B. Over-excavation

1 Operations shall be directed to avoid excavating beyond the specified profiles. Any overexcavation beyond these profiles carried out without the written instruction of the Superintendent shall be made good to the directions of the Superintendent and approved fill material compacted to the requirements of this Specification at the Contractors cost.

### 3.06 Dimensions and Tolerances

1 The earthworks shall be constructed to the levels and dimensions as shown on the Drawings. The following tolerances in finished dimensions shall not be exceeded:

| • | Locations of tops and bottoms of walls and   |           |
|---|----------------------------------------------|-----------|
|   | embankments in plan                          | ±500 mm   |
| • | Base width of landfill area                  | ±1,000 mm |
| • | Levels of tops of embankments                | ±100 mm   |
| • | Maximum variation from a 4 metre long        |           |
|   | straight edge placed in any direction on any |           |
|   | formed surface                               | ±50 mm    |
|   |                                              |           |

### 3.07 Control of Water

1 During construction, all areas of earthworks shall be drained and/or pumped of water and kept free of water by temporary drains or other means. Surface water from the surrounding country shall be prevented from flowing on to the excavations or areas of fill by the construction of diversion drains as shown on the drawings before any other excavation commences. Excavation and fill areas shall always be graded to facilitate surface drainage and any loose material compacted to prevent absorption. Particular care shall be taken to ensure that surface water does not reach embankments or fill material that has yet to be compacted.



### 3.08 Clean-up

1 On completion of the Works, the site shall be generally cleared, any damage made good and the site restored to a neat and tidy condition. All work areas shall be smoothed and graded in a manner to conform to the natural appearance of the landscape. Where unnecessary destruction, scarring, damage or defacing has occurred as a result of the operations, the same shall be repaired, replanted, reseeded, or otherwise corrected to the satisfaction of the Superintendent.





### **GEOSYNTHETIC CLAY LINER (GCL)**

### SECTION TS02650

### PART 1 GENERAL

### 1.1 Scope of Work

- A. This section covers the supply, transportation, handling and installation of the Geosynthetic Clay Liner (GCL).
- B. The liner elements are to be installed in accordance with the Construction Quality Assurance (CQA) plan prepared for this project.

### 1.2 Related Sections

A. Section TS 02240: Earthwork

### PART 2 PRODUCTS

### 2.1 Geosynthetic Clay Liner (GCL)

- A. The Geosynthetic Clay Liner (GCL) consists of a bentonite clay layer sandwiched between two geotextile layers. The layers are then needle punched to produce a textile with high connection strength.
- B. The supplier shall demonstrate by providing MQA Certificates that the GCL provided complies with the requirements outlined in GRI-GCL3 as set out below:

| Material            | Property                                                | ASTM Test  | Value                                                                                                       | Test Frequency        |
|---------------------|---------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------|-----------------------|
|                     |                                                         | Method     |                                                                                                             |                       |
| GCL (as             | Mass of GCL <sup>(2)</sup>                              | ASTM D5993 | ≥ 4,000 g/m <sup>2</sup>                                                                                    | 4,000 m <sup>2</sup>  |
|                     | Mass of Bentonite <sup>(2)</sup>                        | ASTM D5993 | ≥ 3,700 g/m <sup>2</sup>                                                                                    | 4,000 m <sup>2</sup>  |
|                     | Moisture content <sup>(1)</sup>                         | ASTM D5993 | ≤ 35%                                                                                                       | 4,000 m <sup>2</sup>  |
|                     | Strip Tensile<br>Strength                               | ASTM D6768 | ≥ 4.0 kN/m                                                                                                  | 20,000 m <sup>2</sup> |
|                     | Peel Strength                                           | ASTM D6496 | ≥ 360 N/m                                                                                                   | 4,000 m <sup>2</sup>  |
|                     | Permeability <sup>(1)</sup> "or"<br>Flux <sup>(1)</sup> | ASTM D5887 | $\leq 5.0 \times 10^{-11} \text{ m/sec}$<br>"or" $\leq 1.0 \times 10^{-8} \text{ m}^{-3}\text{/sec-m}^{-2}$ | 25,000 m <sup>2</sup> |
| GCL<br>Permeability | Permeability (max at 35 kPa) <sup>(1) (3)</sup>         | ASTM D6766 | ≤ 1.0 x 10 <sup>-8</sup> m/sec                                                                              | yearly                |



| Material | Property                      | ASTM Test<br>Method | Value                           | Test Frequency |
|----------|-------------------------------|---------------------|---------------------------------|----------------|
|          | Permeability (max at 500 kPa) | ASTM D6766          | ≤ 5.0 x 10 <sup>-10</sup> m/sec | yearly         |

- <sup>(1)</sup> These values are maximum (all others are minimum)
- <sup>(2)</sup> Mass of the GCL and bentonite is measured after oven drying per the stated test method
- <sup>(3)</sup> Value represents GCL permeability after permeation with a 0.1M calcium chloride solution (11.1g CaCl<sub>2</sub> in 1-liter water) for termination criterion see Section 5.6.1 of GRI-GCL3
- C. The bentonite used in the manufacture of the GCL supplied for the works shall meet the following criteria;

| Property                 | Value                                                                                   |  |  |
|--------------------------|-----------------------------------------------------------------------------------------|--|--|
| Montmorillonite content  | > 70 wt%                                                                                |  |  |
| Carbonate content*       | < 1–2 wt%                                                                               |  |  |
| Bentonite form           | Natural Na-bentonite or >80 wt% Sodium as activated bentonite                           |  |  |
| Particle size            | Powdered (e.g. 80% passing 75 micron sieve) or Granulated (e.g. < 1% passing 75 micron) |  |  |
| Cation exchange capacity | ≥ 70 meq/100 g (or cmol/kg)                                                             |  |  |
| Swell index              | ≥24 cm3/2g                                                                              |  |  |

\* Carbonate here implies calcite, calcium carbonate or other soluble or partially soluble carbonate minerals.

D. The following information shall be noted on the rolls of GCL supplied to the site:

- product name, grade and name of manufacturer;
- date of manufacture, batch number;
- roll number;
- roll length;
- roll weight;
- roll width; and
- label with handling guidelines.
- E. The following Materials Quality Assurance (MQA) data for the rolls of GCL supplied to the site shall be supplied to the Superintendent:
  - test results to show conformance with the criteria noted above;
  - date of manufacture;
  - lot number, roll number, length and width;
  - bentonite manufacturer quality documentation for the particular lot of clay used in the production of the rolls delivered;
  - geotextile manufacturer quality control documentation for the particular lots of geotextiles used in the production of the rolls delivered;
  - cross-referencing list delineating the corresponding geotextile and bentonite lots for the materials used in the production of the rolls delivered;



### **GEOSYNTHETIC CLAY LINER (GCL)**

- QC program laboratory certified reports;
- the manufacturer's approved QA stamp; and
- technician's signature.

### F. On-site Conformance Testing

Once all GCL material is received on-site, the Third Party CQA Consultant shall undertake conformance testing of the GCL to confirm compliance with the requirements outlined in the table below:

| Item                                                               | Property                                                                         | ASTM<br>Test<br>Method | Acceptance Criteria                                                                                                                                        | Test<br>Frequency                      |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Conformance<br>testing (upon<br>shipment of<br>GCL to the<br>site) | Thickness (dry)                                                                  | ASTM<br>D5199-12       | The GCL thickness<br>shall be ≥ the<br>thickness of the GCL<br>sample that passes<br>the "Mass per unit<br>area of bentonite<br>component of GCL"<br>test. | Every roll                             |
|                                                                    | Mass per unit area of bentonite component of GCL                                 | ASTM<br>D5993          | ≥ 4,000 g/m <sup>2</sup> for X1000<br>≥ 3,700 g/m <sup>2</sup> for X2000                                                                                   | 1 sample per<br>2,500m <sup>2</sup>    |
|                                                                    | Mass per unit area of GCL                                                        |                        | Refer Section 2.1                                                                                                                                          | 1 sample per<br>500m <sup>2</sup>      |
|                                                                    | Montmorillonite content (X-<br>ray diffraction method)                           |                        | Refer Section 2.1                                                                                                                                          | 1 sample per<br>10,000m <sup>2</sup>   |
|                                                                    | Cation Exchange Capacity of<br>Bentonite (methylene blue<br>method)              |                        | Refer Section 2.1                                                                                                                                          | 1 sample per<br>500m <sup>2</sup>      |
|                                                                    | Mass/unit length of bentonite<br>in overlaps (visual inspection<br>and weighing) |                        | Visual inspection                                                                                                                                          | 1 sample per<br>40m overlap            |
|                                                                    | Moisture content of bentonite                                                    | AS<br>1289.2.1.1       | ≤35%                                                                                                                                                       | 1 sample per roll or 500m <sup>2</sup> |
|                                                                    | Swell index/free swell of clay                                                   | ASTM<br>D5890          | Refer Section 2.1                                                                                                                                          | 1 sample per<br>500m <sup>2</sup>      |
|                                                                    | Fluid loss                                                                       | ASTM<br>D5891          | Refer Section 2.1                                                                                                                                          | 1 sample per<br>500m <sup>2</sup>      |



### CONSTRUCTION OF ACS CONTAINMENT CELL, KURNELL TERMINAL

### GEOSYNTHETIC CLAY LINER

| Item                                   | Property                                                                                                                                                                   | ASTM<br>Test<br>Method                    | Acceptance Criteria                                                      | Test<br>Frequency                     |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|---------------------------------------|
|                                        | Peel strength (for needle-<br>punched products only                                                                                                                        | ASTM<br>D6496                             | Refer Section 2.1                                                        | 1 sample per<br>500m <sup>2</sup>     |
|                                        | Tensile strength of GCL                                                                                                                                                    | ASTM<br>D6768                             | ≥ 8 kN/m for X1000<br>≥ 10 kN/m for X2000                                | 1 sample per<br>10,000m <sup>2</sup>  |
|                                        | CBR Burst Strength of GCL                                                                                                                                                  | AS 3706.4                                 | ≥ 1,600 N for X1000<br>≥ 2,500 N for X2000                               | 1 sample per<br>25,000m <sup>2</sup>  |
|                                        | Permeability "or" Index Flux                                                                                                                                               | ASTM<br>D5887                             | Refer Section 2.1                                                        | 1 sample per<br>10,000m <sup>2</sup>  |
| Visual<br>inspection of<br>GCL         | Colour, thickness, needle<br>punching, presence of<br>needles or broken needles,<br>and sewing density or other<br>faults in the material                                  |                                           | Visual inspection                                                        | Every roll                            |
| Visual<br>inspection of<br>in-situ GCL | Thickness of GCL (i.e.<br>uniformity of bentonite<br>distribution). If thickness<br>appears to be variable a<br>check of the mass per unit<br>area shall be conducted.     | Visual<br>Inspection<br>as ASTM<br>D5993  | ≥ 4,000 g/m <sup>2</sup> for X1000<br>≥ 3,700 g/m <sup>2</sup> for X2000 | Visual<br>inspection of<br>every roll |
|                                        | Apparent variations in the as<br>placed moisture distribution.<br>If moisture content appears<br>to be variable a check of the<br>mass per unit area shall be<br>conducted | Visual<br>inspection<br>and ASTM<br>D5993 | ≥ 4,000 g/m <sup>2</sup> for X1000<br>≥ 3,700 g/m <sup>2</sup> for X2000 | Visual<br>inspection of<br>every roll |

Note:

- 1. All conformance tests must be reviewed, accepted and reported by the Third Party CQA Consultant before deployment of the GCL.
- 2. All testing must be performed on samples taken from the GCL delivered to site under the Third Party CQA Consultant supervision.
- 3. All laboratory tests must be performed in a third party independent accredited laboratory.
- 4. The required testing frequencies may be revised by the Third Party CQA Consultant to conform with improvements in testing methods and/or in the state of the art practice and/or to account for the criticality of application (i.e. to account for the importance of the GCL for the safety of works). Revisions must be approved by the relevant authorities before application.


**GEOSYNTHETIC CLAY LINER (GCL)** 

- The process of sampling the GCL rolls shall not cause any damage to the GCL rolls. Sampling shall be undertaken as follows:
- Only one GCL roll shall be opened at any one time;
- Once sampling has been completed, the packaging of each GCL roll shall be fully reinstated to ensure no deterioration of the GCL; and
- Sampling shall be undertaken in the shortest period of time to avoid deterioration of the GCL.

#### PART 3 EXECUTION

#### 3.1 Installation Pattern

- A. All personnel involved with the installation of the GCL shall have read and fully understood this specification. If there are any matters which need clarification, these should be brought to the attention of the Superintendent prior to laying the GCL.
- B. The Contractor shall prepare an installation plan for the GCL and submit the plan to the Superintendent for approval. No GCL shall be deployed until approval of the layout plan has been given.

#### 3.2 Protection of Subgrade

- A. The subgrade for the GCL shall be compacted soils free from protrusions such as stones, debris, standing water, indentations or surface cracks.
- B. The moisture content of the compacted subgrade shall be kept constant during construction by watering as required.

#### 3.3 Supervision

- A. The installation of the GCL shall be supervised by an independent third party CQA officer appointed by the Principal.
- B. The installation of the GCL is to be noted in the construction program provided by the Contractor at the commencement of the project.
- C. The Superintendent is to be notified at least 48 hours prior to the laying of the GCL. Site inspections shall take place as required by the CQA plan.



#### 3.4 Packaging, Transportation and Unloading on Site

- A. GCL rolls shall be packed in moisture tight plastic wrapping.
- B. GCL rolls shall be delivered in (closed/covered) containers on trucks, vehicles, etc. The storage space for the GCL is to be dry, even and free from debris or foreign matter. The storage space has to be accessible at least from the top. Bags of bentonite powder and the non-woven fabric strips are to be protected from the weather once delivered.
- C. Should any damage occur in transit it must be immediately brought to the attention of the Superintendent who will advise on the required course of action.
- D. A hard, dry free draining surface must be provided for unloading and storage. Rolls will be offloaded using:
  - 1. Two > 55mm slings (wrapped around the GCL roll 1/3 of the width from the edge) fixed to an excavator bucket or a front end loader. A steel tube or similar reinforcement should be inserted into the roll to prevent excessive deformation across the roll during off-loading; or
  - 2. A spreader bar with steel tube insert, ensuring that the chains or belts do not damage the roll; or
  - 3. Using a "carpet prong" protruding from the front end of a forklift or other equipment. The prong should be at least three-fourths the length of the core and also must be capable of supporting the full weight of GCL without significant bending.
- E. Under no circumstances should GCL rolls be dragged, lifted by one end only, pushed to the ground from the delivery vehicle, or otherwise unloaded in a fashion which could damage the roll.
- F. After transportation and unloading the plastic wrapping is to be checked. Minor damage should be repaired with weather resistant adhesive tape. Wrapping should only be removed immediately before use. The maximum storage height is four rolls.

#### 3.5 Storage

- A. GCL rolls should be stored in their original, unopened packaging in a location away from construction traffic.
- B. The designed storage area should be level, dry, well-drained, and stable and should protect the product from:
  - 1. precipitation
  - 2. standing water
  - 3. ultraviolet radiation
  - 4. chemicals
  - 5. excessive heat
  - 6. vandalism and animals
- C. GCL rolls are to be stored lying flat, continuously supported, and should never be stored standing on one end. Enclosed indoor storage is preferred if GCL is to be stored for long periods.



#### **GEOSYNTHETIC CLAY LINER (GCL)**

**SECTION TS02650** 

#### 3.6 Repairs

A. Where GCL has been damaged during installation such areas are to be repaired by covering with an overlapping piece of GCL. The overlaps are to be at least 500mm and should be done in accordance with this Specification. All damage and repairs to the GCL are to be reported to, and inspected by the CQA officer. Full documentation of repairs including location, causes, method of repair and inspection dates are to be recorded by the CQA officer.

#### 3.7 Placement of GCL

- A. Understanding of the Installation Staff
  - 1. The quality of installation is decisive for the success of a project. Before installation, this Specification, and in particular the equipment requirements and bentonite paste mixing procedure must be thoroughly understood by all personnel responsible for the laying. Any questions arising should be referred to the Superintendent.
- B. GCL Placement
  - 1. GCL factory wrapping should only be removed immediately before installation.
  - 2. The edges of the GCL are marked on the bottom side with a coloured line to denote the standard overlap of 300mm.
  - 3. On site GCL is unrolled on the ground using the spreader bar. The overlap line should be visible on the top of the panel.
  - 4. The complete area of the GCL is to be inspected by the CQA officer for damage and defects and any irregularities and repairs noted in site documentation.
  - 5. Installed liners must not be trafficked by vehicles, and walking on the liners must be kept to an absolute minimum.
  - 6. Rolls are to be cut to length with a carpet knife or electric cutter.
  - 7. Rolls must be laid without folds on the subgrade with a standard overlap of 300mm in both the longitudinal and transverse direction. Longitudinally the coloured line can be used during installation to control the overlap width.
- C. Overlying Clay Layer Placement
  - 1. A layer of clay liner material of at least 300mm in depth (loose) shall be placed over the GCL by the end of each working day after the installed area has been inspected.
  - The GCL may not be trafficked on directly. The cover material should be pushed in front of the construction equipment thus creating a safe working platform. Overlaps should not be moved or squeezed during this process.
  - 3. Seams are to be continually inspected by the CQA officer while cover material is being placed over the GCL to ensure their integrity. Seams should be checked for movement between the sheets of The GCL. If any movement is detected, covering is to halt and seams inspected to ensure their integrity and the Superintendent is to be notified prior to recommencing cover placement.



- 4. Generally, temporary haul roads should not go over areas where the GCL has been laid. These areas, if possible, should be sealed last to minimise traffic over the GCL. Where site traffic cannot be avoided (e.g. the delivery of cover material by trucks) additional protection measures will be required. The additional measures are to be as directed by the Superintendent.
- 5. For temporary roads, a minimum coverage over The GCL of at least 900mm is acceptable without any further analysis. Shallower coverage or alternative cover materials are to be directed to the CQA officer for approval.

#### 3.8 Treatment of Seams in GCL

A. End Overlaps (Transverse Direction)

- 1. The treatment of end overlaps are to be inspected by the CQA officer.
- 2. No trafficking or walking is to occur over the overlap region. The overlap must also be free from folds and foreign matter (e.g. aggregate, soil). Any foreign matter on the laps must be swept away carefully.
- 3. End overlaps shall occur in a tiled layout with the direction of ground slope. End overlaps in sumps or inverts are to be avoided.
- 4. All end overlaps must be sealed with bentonite paste of similar bentonite specification to that in the GCL.

#### 3.9 Weather Conditions

- A. GCL should be installed in dry weather conditions and frost free weather conditions where bentonite paste is used for overlaps.
- B. Sufficient plastic (in rolls) is to be stored on site to cover any GCL laid in case of rain. Any laid GCL is to be covered immediately rain commences with plastic or soil cover material.

#### **END OF SECTION**



#### PART 1 GENERAL

#### 1.01 Scope of Work

- A The work covered under this Specification consists of the supply and installation of the geosynthetic materials for Containment Cell as shown on the Drawings and summarised as follows:
  - 2.0 mm Smooth High Density Polyethylene (HDPE) Geomembrane on the cell floor and capping.
  - Cushion geotextile as protection layer over the HDPE liner.
  - Separation geotextile over aggregate drainage layers.
  - Geocomposite drain layer.
- B Requirements for quality control and testing, including preparation of information sheets are cited in the Specification for QUALITY CONTROL REQUIREMENTS and the Construction Quality Assurance (CQA) Plan.
- C The process of assessing manufacturers test results and installation works shall be supervised full time by the independent Construction Quality Assurance Officer (CQA Officer).

#### 1.02 Related Sections

A Section TS02240: Earthworks

#### PART 2 PRODUCTS

#### 2.01 Material Specification

- A The HDPE Geomembrane shall not be placed into position until the Contractor has produced documentary evidence from the manufacturer to the Superintendent and CQA Inspector that the product conforms to the requirements of this specification. This action constitutes a **HOLD POINT**. The Superintendent's approval of the documentary evidence is required prior to release of the hold point. The CQA Plan also requires Auditor approval of this phase and is a **HOLD POINT** under the Audit process.
- B The geomembrane liner supplied shall be a High Density Polyethylene liner. The geomembrane shall consist of single resin being 100% Virgin and of a narrow molecular distribution. Carbon black shall be added to the resin for ultra-violet resistance, the geomembrane shall be manufactured to the following approximate ratios; HDPE 97.5% Carbon Black 2.5%.
- C The geomembrane supplied shall be a 2.0mm smooth HDPE geomembrane for the cell floor and capping layers. The Contractor shall provide manufacturer information for type of resin (name and number) used to manufacture the HDPE geomembrane.
- D Each roll of geomembrane shall be labelled from the manufacturer to provide the following identifying data:
  - 1. Name of Manufacturer and material type;
  - 2. Material Thickness;
  - 3. Roll Number;
  - 4. Roll Dimensions (length and width);
  - 5. Roll Weight;
  - 6. Cross reference numbers to raw material batch and all laboratory certified reports; and
  - 7. The manufacturers approved QA stamp and the technician's signature.



- E The supplied material shall be free from holes, blisters, folds, undispersed raw materials and any signs of contamination by foreign matter.
- F The geomembrane material shall meet the requirements of the attached technical specification.
- G The Contractor is responsible for handling, storage and care for the supplied geomembrane liner. The geomembrane liner shall be protected from fire, damage and UV exposure (as far as practicable) before installation. Geomembrane rolls may be stacked (up to 4 rolls in height) to provide access to the material for identification of the rolls.
- H The geomembrane liner rolls shall be placed in a relatively dry and smooth subgrade (not to be placed on gravel surface) to minimise potential damage to the geomembrane.

#### Geotextile

- I The Contractor is responsible for handling, storage and care for the supplied geotextile liner. The geotextile liner shall be protected from UV exposure (as far as practicable), inundation, mud, puncture or other damaging conditions. Geotextile rolls may be stacked to provide access to the material for identification of rolls.
- J Where a significant number of defects are identified on a geofabric roll the CQA Officer shall assess the material and reserves the right to reject any damaged rolls.

#### 2.02 Manufacturer test reporting

- A It is a requirement that all geomembrane liner materials be certified for quality prior to installation. A separate Manufacturer's Quality Assurance report shall be submitted to the Superintendent by the Contractor. This report shall comprise a Raw Materials Batch Report and a Product Report.
- B The geotextile (cushion and separation) supplied shall be non woven needle punched and either polyester or polypropylene.
- D Table of HDPE geomembrane and geotextile properties as shown in the following tables:

#### **Table 1 - HDPE Geomembrane Properties**

| Property                            | Units             | Value    | Test              | Frequency of<br>Manufacturer's QA<br>Testing |
|-------------------------------------|-------------------|----------|-------------------|----------------------------------------------|
| Thickness (ave.)                    | mm                | 2.0      | ASTM D5199        | Every roll                                   |
| Minimum Thickness                   | mm                | 1.8      | ASTM D5199        | Every roll                                   |
| Density (min)                       | g/cm <sup>3</sup> | ≥ 0.94   | ASTM D1505 & D792 | 90,000 kg                                    |
| Melt Flow Index                     | g/10 min          | < 1.0    | ASTM D1238        | Per batch or resin type                      |
| Tensile Properties (each direction) |                   |          |                   | 9,000 kg                                     |
| - Strength at break                 | N/mm              | > 53     | ASTM D6693        | -                                            |
| - Elongation at break               | %                 | > 700    | ASTM D6693        |                                              |
| - Strength at yield                 | N/mm              | > 29     | ASTM D6693        |                                              |
| - Elongation at yield               | %                 | > 12     | ASTM D6693        |                                              |
| Tear Resistance (min ave.)          | Ν                 | > 249    | ASTM D1004        | 20,000 kg                                    |
| Puncture Resistance (min ave.)      | N                 | > 640    | ASTM 4833         | 20,000 kg                                    |
| Carbon Black Content                | %                 | 2 to 3   | ASTM D1603        | 9,000 kg                                     |
| Carbon Black Dispersion             | Rating            | 1 or 2   | ASTM D5596        | 20,000 kg                                    |
| Oxidative Induction Time (OIT)      |                   |          | 1) ASTM           | 90,000 kg                                    |
| - 1) Standard OIT                   | Min               | 1) > 100 | D3895             | _                                            |
| OR                                  |                   | 2) > 400 | 2) ASTM           |                                              |
| - 2) High Pressure OIT              |                   |          | D5885             |                                              |



#### SECTION TS 2700

| Property                                                                                                                      | Units | Value              | Test                                            | Frequency of<br>Manufacturer's QA<br>Testing |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|-------------------------------------------------|----------------------------------------------|--|--|
| Oven aging @ 85° C<br>1) Standard OIT, % retained after<br>90 days<br>OR<br>2) High pressure OIT, % retained<br>after 90 days | %     | 1) > 55<br>2) > 80 | 1) ASTM<br>D5721 &<br>D3895<br>2) ASTM<br>D5885 | Per formulation                              |  |  |
| Stress Crack Resistance                                                                                                       | hr    | > 300              | ASTM D5397                                      | Per formulation                              |  |  |
| UV Resistance<br>1) If High pressure OIT, % retained<br>after 1600 hours                                                      | %     | 50                 | ASTM D5885                                      | Per formulation                              |  |  |
| Table 2 - Cushion Geotextile Properties                                                                                       |       |                    |                                                 |                                              |  |  |

#### **Table 2 - Cushion Geotextile Properties**

| Property                                                         | Units            | Value<br>(MARV*)   | Test         | Frequency of<br>Manufacturer's QA<br>Testing  |
|------------------------------------------------------------------|------------------|--------------------|--------------|-----------------------------------------------|
| Thickness                                                        | mm               | 4.0                | AS 2001-2.15 |                                               |
| Mass                                                             | g/m <sup>2</sup> | 700                | AS 2001–2.13 |                                               |
| CBR Burst strength                                               | Ν                | 8,950***           | AS3706.4     |                                               |
| Trapeziodal Tear<br>Strength (MD/Cross<br>MD)                    | N                | 1,180/1,180        | AS3706.3     | 1 test per batch or<br>truckload of material, |
| Wide Strip Tensile<br>Strength (MD/Cross<br>MD)                  | kN/m             | 48.0/48.0          | AS3706.2     | greatest number of tests                      |
| Puncture Resistance<br>(d <sub>500</sub> ) (Drop Cone<br>Method) | mm               | 13.0**<br>(MaxARV) | AS3706.5     |                                               |

\* MARV denotes Minimum Average Roll Value, MD denotes Machine Direction, Flow rate is typical value.

\*\* MaxARV denotes Maximum Average Roll Value.

\*\*\* If the cushion geotextile does not meet this test value the material may be assessed against the GRI standard requirements.



#### Table 3 - Separation Geotextile Properties

| Property                                        | Units  | Value<br>(MARV*) | Test         | Frequency of<br>Manufacturer's QA<br>Testing |
|-------------------------------------------------|--------|------------------|--------------|----------------------------------------------|
| CBR Burst strength                              | N      | 1500**           | AS3706.4     |                                              |
| Trapeziodal Tear<br>Strength (MD/Cross<br>MD)   | N      | 240/220          | AS3706.3     | 1 nov botch                                  |
| Wide Strip Tensile<br>Strength (MD/Cross<br>MD) | kN/m   | 9.0/7.7          | AS3706.2     | i per batch                                  |
| Flow rate (at 100 mm head)                      | l/m²/s | > 230            | AS 3706.9-01 |                                              |

\* MARV denotes Minimum Average Roll Value, MD denotes Machine Direction, Flow rate is typical value.

\*\* If the separation geotextile does not meet this test value the material may be assessed against the GRI standard requirements.

- E The Batch Report for Raw Materials shall be provided for each and every raw material batch associated with the geomembrane product delivered to site and shall conform to the following or approved alternative:
  - 1 Density Test
  - 2 Carbon Black Content
  - 3 Melt Index
  - 4 Stress Crack Resistance (Bell Test)
  - 5 Puncture Resistance
  - 6 Oxidative Induction Time (OIT)
  - 7 Oven aging (Standard OIT)

ASTM D1505 ASTM D1603 ASTM D1238 ASTM D5397 ASTM D4833 ASTM D3895 ASTM D5721 & D3895

- F The Product Report shall contain data compiled for each and every roll of geomembrane delivered to site in relation to the following test methods or approved alternative:
  - 1 Tensile Properties ASTM D6693, including Strength at Yield, Elongation at Yield, Strength at Break, Elongation at Break
  - 2 Thickness (by method of) ASTM D5199
  - 3 Carbon Black Dispersion ASTM D5596
- G The Manufacturer's Report (along with the Materials Identification) shall be submitted prior to the arrival of the material to the construction site. No materials will be accepted for delivery to site, or progress payment made, unless all necessary Manufacturer's Quality Assurance certification data, as described above, has been provided to the Superintendent. All such data must be supplied in sufficient time such that no delay shall be caused to the project programme. Failure to conform to this requirement, causing resultant delay to the progress of the works, will not be grounds for an extension in time or removal of any commercial penalties which accompany this Contract.



#### 2.03 Independent Testing

- A The geomembrane and geotextile rolls delivered to site will be assessed against the Manufacturer's Report for compliance with this specification. The roll numbers will also be assessed.
- B The geomembrane delivered to site is recommended to be sampled and tested by an independent laboratory (NATA registered) as shown in the table below.

| Table 4 - Geomembrane | Testing |
|-----------------------|---------|
|-----------------------|---------|

| Property                                                                                                                            | Test                                                                                 | Frequency of Independent QA testing                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Thickness (ave.)                                                                                                                    | ASTM D5994                                                                           | Each roll                                                                                             |
| Density (min)                                                                                                                       | ASTM D1505 & D792                                                                    |                                                                                                       |
| Tensile Properties (each direction)<br>- Strength at break<br>- Elongation at break<br>- Strength at yield<br>- Elongation at yield | ASTM D6693 type IV<br>ASTM D6693 type IV<br>ASTM D6693 type IV<br>ASTM D6693 type IV | Per 5000 m <sup>2</sup> or one sample every<br>5 rolls, whichever is the greatest<br>number of tests. |
| Tear Resistance (min ave.)                                                                                                          | ASTM D1004                                                                           |                                                                                                       |
| Puncture Resistance (min ave.)                                                                                                      | ASTM D4833                                                                           |                                                                                                       |
| Carbon Black Content                                                                                                                | ASTM D1603                                                                           |                                                                                                       |
| Carbon Black Dispersion                                                                                                             | ASTM D5596                                                                           |                                                                                                       |
| Oxidative Induction Time (OIT)                                                                                                      | ASTM D3895, ASTM<br>D5885                                                            | 1 sample every 10,000m <sup>2</sup> or per resin type or manufacturing run.                           |
| Stress Crack Resistance                                                                                                             | ASTM D5397                                                                           |                                                                                                       |

The test results from the independent laboratory testing shall meet the requirements outlined in Section 2.02.C. The Contractor shall be responsible for the testing of the material.

C The geotextile delivered to site is recommended to be sampled and tested by an independent (NATA registered) as outlined in the relevant GRI guideline;



| Material Property                                                | Units | Value<br>(MARV*)   | Test         | Frequency of<br>Independent QA<br>Testing            |
|------------------------------------------------------------------|-------|--------------------|--------------|------------------------------------------------------|
| Thickness                                                        | mm    | 4.0                | AS 2001-2.15 | $1 \text{ completes ref } 2 \text{ E00 } \text{m}^2$ |
| Mass                                                             | g/m²  | 700                | AS 2001–2.13 | T sample per 2,500 m                                 |
| Puncture Resistance<br>(d <sub>500</sub> ) (Drop Cone<br>Method) | mm    | 13.0**<br>(MaxARV) | AS3706.5     |                                                      |
| CBR Burst strength                                               | N     | 8,950***           | AS3706.4     | $1 \text{ completes } F 000 \text{ m}^2$             |
| Trapeziodal Tear Strength<br>(MD/Cross MD)                       | N     | 1,180/1,180        | AS3706.3     | r sample per 5,000 m                                 |
| Wide Strip Tensile<br>Strength (MD/Cross MD)                     | kN/m  | 48.0/48.0          | AS3706.2     |                                                      |

#### **Table 5 – Cushion Geotextile Properties**

\* MARV denotes Mean Average Roll Value, MD denotes Machine Direction.

\*\* MaxARV denotes Maximum Average Roll Value.

\*\*\* If the geotextile does not meet this test value the material may be assessed against the GRI standard requirements.

The Contractor shall be responsible for the testing of the material supplied for the works.

#### PART 3 CONSTRUCTION

#### 3.01 Work Method Statements

At least two weeks prior to commencing construction of the HDPE geomembrane liner, the Contractor shall provide a method statement outlining the method of construction, testing (type, frequency and methods), equipment to be used, proposed panel layout plan, pro-forma sheets for recording of works undertaken etc. This action constitutes a **HOLD POINT**. The Superintendent's approval of the method statement is required prior to the release of the hold point.

#### 3.02 Subgrade Preparation

- A All subgrade surfaces over which the HDPE geomembrane shall be placed, will be prepared as follows. The area to be lined shall be smooth and free of stones, rocks, roots, sticks and any sharp objects or debris of any kind that may compromise the integrity of the geomembrane liner.
- B The surface shall provide a firm, unyielding uniform base for the geomembrane. This surface shall be compacted in accordance with and met the requirements of the Specification TS 2240 EARTHWORKS.

#### 3.03 Geomembrane and Geotextile Installation

#### Geomembrane placement

- A Prior to the installation of the geomembrane liner, the Contractor and the Superintendent shall together inspect the subgrade to be lined. All sudden depressions, humps, earth clods, roots, stones, sharp objects or debris of any kind which may compromise the integrity the geomembrane liner shall be removed at the Contractor's expense to the satisfaction of the Superintendent. Significantly desiccated clay liner shall also be reworked.
- B A detailed panel layout plan will be prepared for the geomembrane and geotextile layers and approved by the CQA Officer prior to installation.



- C The geomembrane liner shall be installed strictly in accordance with the requirements of this Specification and, where not specified, with the geomembrane liner manufacturer's requirements.
- D This action constitutes a **HOLD POINT**. The Superintendent's approval to the set-out is required prior to the release of the hold point.
- E The site installation of the geomembrane liner shall be carried out by personnel who have had extensive previous experience with installation works of a similar nature. The geomembrane liner shall not be installed under weather conditions where the ambient temperature is less than 5 degrees Celsius, more than 35 degrees Celsius, during rain or when rain is threatening, high winds or dusty conditions.
- F Sandbags shall be used as required to hold the liner in position during installation. Sandbags shall be sufficiently close-knit to preclude fines from working through the bottom, sides or seams of the bags. Paper bags will not be permitted. Burlap bags, if used must be lined with plastic. Bags that are split, torn or otherwise losing their contents shall be immediately removed from the works area and any spills immediately cleaned up. Sandbags placement during geomembrane liner deployment shall not damage the geomembrane liner in any way.
- G Placed geomembrane liners shall be ballasted by sandbags to avoid wind uplift. The geomembrane installer is responsible for assessing the number of sandbags required.
- H No geomembrane liner shall be installed over areas until approval of these surfaces from the Superintendent has been received by the Contractor. Failure to comply with this condition may result in the Superintendent directing the removal of the liner in that area for the purpose of inspection. Any costs associated with the removal or any other works necessary to enable such an inspection to be undertaken shall be borne by the Contractor.
- I The Contractor shall prepare and submit to the Superintendent, prior to commencement of the works, Panel and Welding Layout drawings in relation to the placement of the geomembrane liner.
- J The liner sheets shall be deployed in a continuous manner down embankments or across the base and shall be lapped over adjacent sheets by a minimum of 150 mm or to a greater width as required by the weld type to be employed. The geomembrane liner and cushion Geotextile shall be deployed in a manner that eliminates any generation of cross seam on the bunds and on side slopes.
- K The fusion welding of panel ends shall not form a crucifix ('+') and shall have the T-joints to have a minimum separation of 0.5m between joints.
- L All T-joints, where 3 seams are joined to form a 'T', shall be considered to be a defect and shall be patched.
- M Where panels are placed on bunds and base separately (that is in a different orientation), the join between the bund and base panels shall be 1.5 m away from the toe of bund.



- N The entire surface area of each and every roll shall be inspected by the Contractor during unrolling and placement to ensure that there are no tears, abrasions, indentations, cracks, thin spots or other faults in the material. The Contractor shall inform the Superintendent of any such occurrence. It shall be the responsibility of the Contractor to ensure that all damage within the geomembrane liner during the works is repaired or replaced.
- O The thickness of the geomembrane shall be verified onsite by the independent CQA officer at random points where the thickness of the geosynthetics, in the opinion of the CQA officer, appears less than specified or at an approximate average spacing of 20m apart. Thickness shall be measured at the edge of the sheet using a micrometer or similar instrument.
- P The geomembrane liner shall be placed in a relaxed state over the prepared subgrade allowing the material to respond to thermal changes without causing excessive buckling, wrinkling or tensioning. No fish mouths or other signs of stress either will be permitted within welds made during installation of the liner. Any such occurrences being identified will be repaired or remedied by the Contractor at no cost to the Principal. The Contractor will be responsible for making any allowances considered necessary to accommodate predictable differential settlements of the surface and/or variations on it.
- Q All geomembrane liner panels deployed shall be welded on the same day.
- R The electric generators used for the works shall be placed on smooth base or rubber wheeled trolleys to prevent damage to the geomembrane.
- S The Contractor shall not engage in any activity that may damage the integrity of the geomembrane liner during geomembrane liner deployment and welding.

#### Geotextile placement

- T Following approval by the Superintendent after the geomembrane placement and testing, the geotextile shall be deployed over the geomembrane liner.
- U Prior to geotextile deployment, the geomembrane liner surface shall be free of debris, sand bags from geomembrane liner placement and any other material that may compromise the integrity of the geomembrane liner.
- V No machinery shall be allowed on to the geomembrane liner surface unless expressly allowed in the approved work method statement.
- W The geotextile shall be placed in a relaxed manner and rolled out. The cushion shall cover the entire surface of the basal liner and the separation geotextile shall cover the entire extent of drainage aggregate.
- X The geotextile is to be heat bonded along edges and roll ends, with a minimum overlap of 150 mm, to form a continuous layer over the geomembrane liner. The edges to be heat bonded shall be free of debris.
- Y The geotextile liner shall not be installed during rain or when rain is threatening, during high winds or dusty conditions.
- Z Any placed geotextile that has a defect (holes, punctures) shall be repaired with a patch with a minimum 300mm overlap in all directions from the defect.
- AA No machinery shall be allowed to travel directly on to the geotextile unless expressly allowed in the approved work method statement.
- BB The geotextile be covered within the timeframes recommended by the manufacturer to prevent UV degradation. If the geotextile cannot be covered within the manufacturer's timeframes, than a suitable alternative control must be implemented.
- CC The separation geotextile placement method over the aggregate drainage layer shall be similar to the cushion geotextile material.



#### 3.04 Field Welding Geomembrane Liner

A Following the placement of the geomembrane sheets, the Contractor shall weld the sheets to form a homogeneous bond between adjacent sheets. A minimum overlap of 150mm for hot wedge (fusion) welding and 150mm for extrusion welding should be used. The following two welding methods are considered appropriate for the purposes of this project:

#### A Primary Weld (Dual Track Fusion Welding)

- 1. Fusion Welding is carried out using the split head wedge weld method which will fuse, by heat, the interface components of the upper and lower overlapped sheets. The weld method will give access to a 15 mm wide void between each of the weld zones for the purpose of air pressure testing the weld.
- 2. All welds constructed will generally comprise Fusion Welding. In particular, the connection of the geomembrane liners to batters with base liners will be carried out using Fusion Welding. Where cross-over welds from adjacent connecting geomembrane occur, the welds must be offset a minimum of 150 mm to avoid multi-layer weld lapping.
- 3. The Contractor shall maintain at least one spare Fusion Welding machine for the works.

#### B Secondary Weld (Extrusion Welding)

- 1. Extrudate or hot air is cast over the upper and lower section of the weld zone to affect the Extrusion Welding. The overlap method is considered to be a secondary weld and would be used for the purposes of making repairs or gaining access to weld those areas which are inaccessible to the split head wedge weld.
- 2. The extrudate rod or granule shall be manufactured from the same resin type used in the manufacture of the geomembrane sheet and all physical properties shall be the same as those possessed by the sheet raw materials. The Contractor shall obtain from the manufacturer certified test data with each and every roll of extrudate rod or granule to confirm this compliance which shall be submitted to and approved by the Superintendent.
- 3. Extrudate granule shall be packaged and stored in a manner that will not allow the ingress of moisture. Moisture extraction methods may be used while in storage such that extrudate contamination does not occur. Prior to use, each bag of extrudate granules shall be tested for moisture content by the Contractor, who will submit a copy of the test results to the Superintendent. Where wetting has occurred, the Contractor shall be responsible for drying or replacing the material. The cost of drying or replacement shall be borne by the Contractor.
- 4. The Contractor shall maintain at least one spare Extrusion Welding machine for the works.

#### C General Site Welding

- 1. The Contractor shall be responsible for regularly checking, calibrating and recording the following items:
  - Preheat air flow and temperature at the nozzle;
  - Extrudate flow and temperature at the barrel outlet; and
  - Split Copper wedge temperature on both contact points.



#### D Weld Preparation

- 1. The Contractor shall ensure that the surface upon which the welding is to take place is free of surface water which could adversely affect the weld quality. The surface of the sheet material within the weld zone shall also be free from any foreign materials such as clay, sand, dust etc.
- 2. Welding shall be undertaken only with the operator and machine settings that were approved during trial welds.
- 3. All welding surfaces shall be adequately abraded (where necessary) using approved mechanical equipment, at a time no more than 30 minutes prior to the commencement of the welding operation. The Contractor shall take all necessary care to give attention to maintaining the abrasion in the immediate region of the weld and shall not cover over grind the areas thus reducing the effective thickness of the geomembrane adjacent to the weld zone. Where over grinding is observed, the Contractor shall rectify this by removing the over grind area as directed by the Superintendent.
- 4. Welding of any one joint should be carried out in one direction only.

#### PART 4 TESTING AND REPAIRS

#### 4.01 Testing of Field Welds

1. All Welds shall be subjected to destructive and non destructive testing by the Contractor. The following procedures shall be followed in the course of this testing:

#### A Trial Welds (Fusion and Extrusion Weld)

- 1. Trial welds shall be made on fragment pieces of membrane to verify that welding machine parameters are set for optimum performance. Such trial welds shall be made prior to actual field welds and at the beginning of each weld period. A minimum of 4 samples should be tested during trials welds. The trial weld samples shall be at least 1.0 m long by 0.3 m wide with the weld centre being formed lengthways. Four 25mm wide samples shall be cut from each trial weld using a calibrated die cutter and two samples are to be tested in shear and two samples are to be tested for peel adhesion to determine the quality and strength of the weld. The shear and peel testing is to be undertaken using a tensiometer that has been calibrated within the last 12 month period prior to the start of the works. The Contractor shall supply evidence of the calibration of the tensiometer to the Superintendent.
- Trial welds shall be performed at a maximum interval of no greater than five (5) hours or more frequently as requested by the CQA officer. This is typically undertaken in the morning prior to the start of any site welding works and approximately at mid-day when ambient temperatures has changed.
- 3. The Fusion Weld trial weld samples shall be tested on both tracks of the split head wedge welder for peel adhesion. The peel adhesion and shear strength shall meet the requirements outlined in Table 1(b) GRI GM19. Any other test methods will require further assessment and subject to approval by the Superintendent.
- 4. The Extrusion Weld shall be tested for peel and shear. The peel adhesion and shear strength shall meet the requirements outlined in Table 1(b) GRI GM19. Any other test methods will require further assessment and subject to approval by the Superintendent.
- 5. The trial weld is considered to have failed if the sample fails in the weld (i.e. weld does not hold and has peeled in excess of 15% of the weld) or do not meet the minimum specified in Table 1(b) GRI GM19. Trial weld samples are not to be artificially cooled (by water or ice) prior to be tested.



- 6. In the event that a trial weld fails, the Contractor shall repeat the entire process after making appropriate adjustments to the welding machine. No field welding should be carried out without a passing trial weld.
- 7. The Contractor shall refer to ASTM D6392 and note failure mode of weld (types of locusof-break) during testing.

#### B Seam Testing (Fusion and Extrusion Welds)

- Destructive seam tests shall be performed on all the welds during the installation of the geomembrane at random locations selected by the CQA Officer or from locations where questionable quality of field seams are noted during full time inspection of works. The seam testing shall be undertaken at a minimum of one sample for every 150 m of fusion seams welded.
- 2. A field destructive test will be carried out on every fusion and extrusion weld greater than 10 metres in length and independent laboratory destructive testing undertaken at a minimum of one sample for every 120m of extrusion seams. The purpose of these tests shall be to confirm and evaluate seam strength and continuity during the field seaming. This test shall be undertaken as field welding work progresses, not at the completion of the welding works. The extrusion weld samples, where possible, shall not be collected in the sump areas.
- 3. Each destructive seam sample size shall approximately be 0.3 m by 0.6 m. The sample size is to be increased if sample archiving is required. Archive samples shall have all necessary information written on the sample (i.e. sample number, seam number, date, welder speed and temperature).
- 4. The field destructive sample shall be cut into ten 25mm samples. Five samples shall be tested for shear and five samples tested for peel adhesion. The shear and peel samples shall be selected and tested alternately so that no two samples are tested in the same mode. The samples shall meet the peel and shear requirements set in Table 1(b) GRI GM19. If the field destructive sample does not meet specification requirements, the Contractor shall undertake remedial works outlined in Point 9 below. There will be no testing of the laboratory sample if the field sample has not met the specification requirements.
- 5. The laboratory destructive samples are to be tested by a NATA accredited laboratory.
- 6. The Superintendent may, at his discretion, request archive destructive samples be sent to an independent laboratory for additional testing.
- 7. The resultant void in the geomembrane seam from the destructive sample is to be treated as a defect and patched.
- 8. If a destructive seam sample is found to be deficient, the Contractor shall trace the seam and undertake additional samples at 5m intervals or until the Contractor is confident the destructive seam sample can pass the testing. If one or both of these samples fail the destructive seam test, the Contractor shall repeat the process until a passing test is obtained. The Contractor is required to inform the Superintendent if the tracing method requires more than two (2) samples in either direction of the initial deficient sample. The Superintendent may decide if the entire seam is to be rejected or for the Contractor to keep tracing the defective seam.
- 9. The CQA officer and/or the laboratory undertaking the destructive sample testing is allowed to undertake further assessment if one of the ten destructive sample tested does not meet specification requirements as some allowance may be made depending on the failure mode of the sample and the performance of the remainder samples.
- 10. The Contractor may elect to cap the defective seam should they decide the seam is defective. To cap a seam, the defective seam first needs to be cut from the placed geomembrane panels. The cap shall extend a minimum 150mm beyond the edge of the defective seam and be welded using the Fusion Weld method. Extrusion weld for the cap shall be kept to a minimum.



11. The Contractor shall refer to ASTM D6392 and note failure mode of weld (types of locusof-break) during testing.

#### C Fusion Weld (non destructive testing)

- 1. The contractor shall test the complete lengths of all wedge welds by use of an air pressurisation method. The air pressure channel testing unit shall be a manometer apparatus consisting of a hollow needle attached to a pressure gauge and air fitting. Air pressure shall be provided by either manual or mechanical pumps. The testing unit shall be capable of withstanding and maintaining pressures between 160 and 300 kPa. The following procedure shall be followed for the completion of these tests:
  - Seal both ends of the seam to be tested;
  - Insert manometer into channel created by the wedge welder and pressurise the channel to 300kPa for a 15mm wide channel and 200kPa for a 25mm wide channel;
  - If loss of pressure exceeds 15kPa or does not stabilise after 5 minutes, locate the faulty area, repair with surface extrusion weld and retest the seam;
  - Cut the weld on the opposite end of the manometer and observe the drop in pressure on the gauge. If the pressure does not drop, the Contractor shall locate any and all blockages on the weld, repair and retest the seam.
  - Remove the manometer and seal with an extrusion surface weld.

#### D Extrusion Weld (non-destructive testing)

- 1. The Contractor shall test the entire length of all surface extrusion welds where possible. The vacuum box assembly unit required for the testing shall consist of a rigid housing, a transparent viewing window, a soft neoprene gasket attached to the bottom of the rigid housing, a valve assembly and a gauge to indicate the chamber vacuum. This unit shall be designed for the sole purpose of vacuum testing and shall be a complete unit incorporating a steel vacuum tank and pump assembly equipped with a pressure controller, pipe connections and a flexible vacuum hose with appropriate fittings/connections. The procedure to be followed for the non-destructive testing shall be:
  - Energise the vacuum pump;
  - Prepare the test area with a water based foaming agent (soapy water);
  - Place the vacuum box over the wetted area and open the vacuum valve;
  - Ensure that a leak tight seal has been created;
  - Obtain a vacuum to a minimum pressure of 30 kPa for a minimum period of 15 seconds, examine the seam through the viewing window for the presence of bubbles;
  - If no bubbles appear after the 15 second period, close the vacuum valve and relocate the testing box to the next adjoining area, maintaining a minimum of 25mm overlap;
  - All areas where bubbles appear shall be marked, repaired and retested.

#### E Repairs – Geomembrane liner and Geotextile layer

 The Contractor should be vigilant and continually inspect the geomembrane, during placement, for any signs of geomembrane damage, punctures, blisters and any sign of geomembrane abnormalities. These areas are to be treated as defective and shall be marked out and repaired by using patches as specified in this Specification.



- 2. The ends and corners of all holes shall be rounded prior to patching. This is to prevent the propagation of the hole after it has been patched. Patches shall extend a minimum of 150mm beyond the limits of the defect area.
- 3. The Contractor should be vigilant and continually inspect the geotextile layer, during placement, for any signs of damage, punctures, and any sign of geotextile abnormalities. These areas are to be treated as defective and shall be marked out and repaired by using patches.

#### 4.02 Supervision

- The Contractor shall provide a Supervisor who will provide continuous supervision and inspection of the installation and construction of the HDPE geomembrane liner. The Supervisor shall have a minimum of five (5) years continuous experience in the installation of HDPE liners. The Contractor shall provide evidence of the Supervisor's experience.
- 2. Prior to the commencement of work on-site, the Contractor shall provide written evidence of the ability and experience of the Supervisor for approval by the Superintendent. The Contractor shall not commence work on-site until the Contractor has complied with the requirements of this subsection and approval has been received from the Superintendent. The Contractor shall bear all costs incurred by any non-compliance with these requirements.
- 3. The Contractor shall be responsible for regularly checking, calibrating and recording the following items:
  - the preheat airflow and temperature at the nozzle;
  - the extrudate flow and temperature at the barrel outlet; and
  - the split copper wedge temperature on both contact points.
- 4. The Contractor shall be responsible for ensuring that an independently calibrated, hand held temperature measuring device is operated to confirm temperatures of each and every welding machine prior to the commencement of any test or field welds. All information regarding the results gained from the temperature device shall be recorded for each welding machine.
- Appointed by the Principal and independent to the Contractor an independent CQA Officer is to provide full time inspection and third party construction quality assurance for the geosynthetic liner works and/or during leachate collection system installation as outlined in specifications.



#### 4.03 QA/QC Certificates and Records

#### A. Certificates

- 1. Prior to the delivery of HDPE and geotextile to the site, the Contractor shall provide the Superintendent with the following test certificates:
  - Certification and test results for all raw materials from the supplier;
  - Certification and test results for all raw materials from the membrane manufacturer;
  - Roll test data reports for each roll of material; and
  - HDPE welding rod/granulate test reports.

#### **B** HDPE Geomembrane Placement Logs

- 1. The Contractor shall keep a log of every HDPE geomembrane panel placed. Information to be recorded in this log shall include the following:
  - The panel identity (including panel number and roll number);
  - Subgrade (if any) conditions;
  - Date when geomembrane panel was placed;
  - Panel conditions;
  - Seam details; and
  - Repair details.

#### C Seam Log

- 1 The Contractor shall keep a HDPE Geomembrane Seam Log which records details of every seam that is formed across the geomembrane. The information recorded on this log shall include:
  - The seam number;
  - The seam length;
  - Welding machine temperature, speed (fusion weld), pre-heat temperature (extrusion weld) and initials of welder who undertook the welding;
  - The tests performed, methods utilised and test results;
  - The location and date of tests; and
  - The name of the person who performed the tests.
- 2. Each form shall be filled out by the Contractor on the same day the seam is formed. The form shall be signed by the Contractor and the membrane installation subcontractor.
- 3. The HDPE geomembrane log shall be carefully maintained by the Contractor. The Contractor shall provide the Superintendent with two (2) copies of the forms placed in the Log within one week of their completion.

#### D Repair Log

- 1. The Contractor shall keep a HDPE Geomembrane Repair Log which records details of every repair that was undertaken on the geomembrane. The information recorded on this log shall include:
  - Repair number;
  - Type of repair;
  - Non-destructive test undertaken on the repair;
  - Date of repair undertaken; and
  - Information of welding undertaken for the repair (welder temperature, welder name).

#### E As Built Drawings

1 Within ONE (1) week of the completion of the HDPE installation, the Contractor shall provide completed as built drawings of the HDPE geomembrane, including roll numbers, panel layout, seam locations, penetration locations, and repair locations. The drawings shall comprise a paper and an electronic copy drawn at a scale of 1:500.



2 The cost of all surveying for the HDPE installation shall be at the Contractor's expense.

#### 4.04 Independent Testing

- A. The Superintendent, at his own discretion, may require the Contractor to extract additional random samples of sheet from each roll and from welded seams to qualify the Contractors test results (at the Contractors cost). Samples shall be kept to a minimum and the following maximum frequency of sampling would apply:
  - 1. Up to 3 material samples from each roll; and
  - 2. Up to 1 weld sample per 100m of seams.
- B. All subsequent independent tests shall be undertaken by an approved testing authority experienced in the testing and evaluation of HDPE geomembrane liners.





# Appendix C

Kurnell Pipeways Asbestos Classification Report



Kurnell Asbestos Contaminated Soils Management Project Caltex Petroleum Australia Pty Ltd 30-Sep-2016 Doc No. 1

# Pipeways Asbestos Contaminated Soils Waste Classification Report

Caltex Kurnell (ID 535)



# Pipeways Asbestos Contaminated Soils Waste Classification Report

Caltex Kurnell (ID 535)

Client: Caltex Petroleum Australia Pty Ltd

ABN: N/A

Prepared by

#### AECOM Services Pty Ltd

Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8934 0000 F +61 2 8934 0001 www.aecom.com ABN 46 000 691 690

30-Sep-2016

Job No.: 60488804

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM Services Pty Limited. All rights reserved.

No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between AECOM Services Pty Limited (AECOM) and the addressee of this report. AECOM accepts no liability of any kind for any unauthorised use of the contents of this report and AECOM reserves the right to seek compensation for any such unauthorised use.

#### Document Delivery

AECOM Services Pty Limited (AECOM) provides this document in either printed format, electronic format or both. AECOM considers the printed version to be binding. The electronic format is provided for the client's convenience and AECOM requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Electronic Transactions Act 2002.

# **Quality Information**

| Document    | Pipeways Asbestos Contaminated Soils Waste Classification Report |
|-------------|------------------------------------------------------------------|
| Ref         | 60488804                                                         |
| Date        | 30-Sep-2016                                                      |
| Prepared by | Kate McGrath, Stephen Randall                                    |
| Reviewed by | Scott Robinson                                                   |

#### **Revision History**

| Revision | Revision<br>Date | Details       | Authorised                       |           |  |
|----------|------------------|---------------|----------------------------------|-----------|--|
|          |                  |               | Name/Position                    | Signature |  |
| A        | 22-Mar-2016      | Client review | William Miles<br>Project Manager | YA        |  |
|          |                  |               |                                  |           |  |
|          |                  |               |                                  |           |  |
|          |                  |               |                                  |           |  |

# **Table of Contents**

| Execut | tive Summa | ary                                             | i  |  |  |  |
|--------|------------|-------------------------------------------------|----|--|--|--|
| 1.0    | Introdu    | uction                                          | 1  |  |  |  |
|        | 1.1        | Background                                      | 1  |  |  |  |
|        | 1.2        | Objectives                                      | 1  |  |  |  |
|        | 1.3        | Scope of Works                                  | 1  |  |  |  |
| 2.0    | Previo     | us Characterisation                             | 3  |  |  |  |
| 3.0    | Sampli     | Sampling Methodology                            |    |  |  |  |
|        | 3.1        | 3.1 Data Quality Objectives                     |    |  |  |  |
|        | 3.2        | Sample and Analysis Quality Plan (SAQP)         | 5  |  |  |  |
|        |            | 3.2.1 Soil Sample Analytical Plan and Rationale | 5  |  |  |  |
|        |            | 3.2.2 Soil Sampling Methodology                 | 5  |  |  |  |
|        | 3.3        | Quality Assurance / Quality Control             | 6  |  |  |  |
| 4.0    | Assess     | sment Criteria                                  | 8  |  |  |  |
| 5.0    | Result     | S                                               | 9  |  |  |  |
|        | 5.1        | Field Screening and Observations                | 9  |  |  |  |
|        | 5.2        | Analytical Results                              | 9  |  |  |  |
|        | 5.3        | Quality of Analytical Data                      | 9  |  |  |  |
| 6.0    | Discus     | ssion and Conclusions                           | 10 |  |  |  |
|        | 6.1        | Asbestos Quantification                         | 10 |  |  |  |
|        | 6.2        | Volume Estimates                                | 10 |  |  |  |
|        | 6.3        | Leachability                                    | 11 |  |  |  |
| 7.0    | Refere     | ences                                           | 12 |  |  |  |
| Appen  | idix A     |                                                 |    |  |  |  |
|        | Figure     | S                                               | A  |  |  |  |
| Appen  | idix B     |                                                 |    |  |  |  |
|        | 2013 F     | Results Tables                                  | В  |  |  |  |
| Appen  | idix C     |                                                 |    |  |  |  |
|        | 2016 F     | Results Tables                                  | C  |  |  |  |
| Appen  | idix D     |                                                 |    |  |  |  |
| 11-    | Calibra    | ation Records                                   | D  |  |  |  |
| Appen  | idix E     |                                                 |    |  |  |  |
|        | Labora     | atory Reports                                   | E  |  |  |  |
| Appen  | idix F     |                                                 |    |  |  |  |
|        | Data V     | /alidation                                      | F  |  |  |  |
|        |            |                                                 |    |  |  |  |

# **Executive Summary**

#### Introduction

AECOM Services Pty Ltd (AECOM) was engaged by Caltex Australia Pty Ltd (Caltex) for approval, environmental, geotechnical and design services associated with the Kurnell Asbestos Contaminated Soils Management Project (the Project) at the Kurnell Terminal (535), Kurnell, NSW 2231 (the Site).

The NSW Environment Protection Authority (EPA) agreed in principle with Caltex that asbestos contaminated soils from the Site, predominantly from below the former pipeways, can be disposed of within a purpose built 'containment cell' also to be located on the Site. As part of the approvals for the proposed cell and to inform the cell design, the quantity of asbestos contaminated soils that are suitable to be placed within the cell needed to be further characterised.

#### Objectives

The overall objectives were as follows:

- Characterise the soil for the presence of asbestos.
- Classify the soil in accordance with the NSW EPA Waste Classification Guidelines (2014).
- Estimate the volume of waste that could be placed directly in the cell, and the volume that would require treatment before being placed in the cell.

#### **Discussion of Results**

Based on the review of the new and existing data, the areas of soil required to be placed in the on-site containment cell, treated and disposed off-site or left in-situ have been calculated. The extent of each of these areas is shown on Figure 2 in Appendix A. The calculated volumes are listed below:

| Soil | Category                                                                                                                | Area (m²) | Volume <sup>1</sup> (m <sup>3</sup> ) |
|------|-------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|
| 1.   | Remain in-situ (asbestos not detected)                                                                                  | 34,773    | 6,955                                 |
| 2.   | On-site asbestos containment cell [Special<br>Waste (Asbestos)/ General Solid Waste<br>(GSW) or Restricted Waste (RSW)] | 47,214    | 10,268                                |
| 3.   | Special Waste (Asbestos)/Hazardous<br>Waste (requires treatment before being<br>placed in containment cell)             | 14,401    | 2,880                                 |
| Tota | al volume for containment cell (2+3)                                                                                    | 61,614    | 13,148                                |

Bank Cubic Meters (BCM) have been provided to measure the volume of material in the ground prior to excavation

The leachate results indicated that the potential for concentrations of metals and benzo(a)pyrene to be detected in leachate at concentrations greater than the NSW EPA *Waste Classification Guidelines* (2014) toxicity characteristic leaching procedure (TCLP) limit for general solid waste is low.

#### Conclusions

The soil has been characterised to estimate:

- the extent of the asbestos contaminated soils in the pipeways
- the volumes of asbestos waste to be contained directly in the proposed asbestos containment cell
- the volume of asbestos waste requiring treatment before containment.

The material classified as special waste (asbestos)/hazardous waste will require treatment to reduce concentrations to the levels for restricted or general solid waste prior to placement in the containment cell.

.

AECOM Services Pty Ltd (AECOM) was engaged by Caltex Australia Pty Ltd (Caltex) for approval, environmental, geotechnical and design services associated with the Kurnell Asbestos Contaminated Soils Management Project (the Project) at the Kurnell Terminal (535), Kurnell, NSW 2231 (the Site). The location of the Site is shown on Figure 1 in Appendix A.

### 1.1 Background

The NSW Environment Protection Authority (EPA) agreed in principle with Caltex that asbestos contaminated soils from the Site, predominantly from below the former pipeways, can be disposed of within a purpose built 'containment cell' also to be located on the Site. The removal of these asbestos contaminated soils from the pipeways and other areas will remove a hygiene risk from the Site and also remove the need to renew the Safework NSW exemption for working in the pipeways.

As part of the approvals and to inform the cell design, the quantity of contaminated soils that are suitable to be placed within the cell requires further assessment. Only soil that is classified as Special Waste (Asbestos) and General Solid Waste (GSW) or Restricted Solid Waste (RSW) in accordance with the NSW EPA *Waste Classification Guidelines* (NSW EPA, 2014) is proposed to be placed in the cell. Soil classified as Special Waste (Asbestos) and Hazardous Waste would require treatment prior to being placed within the cell.

Previous soil characterisation works within the pipeways were undertaken by AECOM in 2013 and were reported in *'Caltex Kurnell (535) Pipeways Contamination Assessment / Characterisation - Stage 2 Report'* (AECOM, 2013). This work included investigating pipeway areas from the Caltex Oil Refinery (COR) and Caltex Lubricating Oil Refinery (CLOR). The report provided preliminary estimates of the quantity of asbestos contaminated waste likely to be generated from the proposed works. The AECOM 2013 report classified volumes of Special Waste (Asbestos) and then as GSW, RSW or Hazardous Waste for three areas: Area A, Area B pipeways, and Area C pipeways across the COR and CLOR.

### 1.2 Objectives

The overall objectives of this investigation were as follows:

- Characterise the soil for the presence of asbestos.
- Classify the soil in accordance with the NSW EPA Waste Classification Guidelines (2014).
- Estimate the volume of waste that could be placed directly in the cell, and the volume that would require treatment before being placed in the cell.

The specific objectives of the additional soil characterisation for each area based on the review of the results of the AECOM 2013 data were:

- Area A: assess the leachability of soils through TCLP analysis where higher total petroleum hydrocarbon (TPH) concentrations [exceeding the NSW EPA (2014) *Waste Classification Guidelines*] and asbestos were reported.
- Area B: assess the absence or presence of asbestos in the southern portion of Area B and undertake further leachability testing through TCLP analysis.
- Area C: further assess the absence or presence of asbestos.

### 1.3 Scope of Works

AECOM and Caltex subcontractors Giovenco Industries Pty Limited (Giovenco) completed the soil sampling works in accordance with the sampling plan and recommended sampling methodologies. The following scope of works was completed:

- A Site walkover with the Giovenco field personnel to confirm the sampling plan and outline recommended sampling methodologies. Due to significant access constraints within the pipeways, Giovenco's onsite experience and technical expertise was relied on to confirm that the sampling works could be undertaken

safely and in a manner that would avoid disturbance of the pipelines and lagging materials within the pipeways.

- Marking of locations and use of a Global Positioning System (GPS) to electronically record each sampling location.
- Sampling of soil with a hand auger from a total of 27 locations along the pipeways in Area A, Area B and Area C.
- Collection of quality assurance and quality control (QAQC) samples.
- Interpretation and assessment of the results and preparation of this report.

The work was conducted with reference to relevant parts of the following guidelines:

- NSW Department of Environment and Conservation (DEC), 2006. *Guidelines for the Site Auditor Scheme* (2nd Edition).
- National Environment Protection (Assessment of Site contamination) Measure (NEPC), 1999. National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (National Environment Protection Council) – considered throughout the investigation.
- NSW OEH, 2011. Guidelines for Consultants Reporting on Contaminated Sites.
- NSW Environment Protection Authority (NSW EPA), 2014. Waste Classification Guidelines.

# 2.0 Previous Characterisation

The AECOM 2013 soil characterisation works included the collection of soil from samples from 57 locations along the length of the pipelines.

The sampling locations are shown on Figure 2 in Appendix A. All of the samples were analysed for asbestos, 18 metals, total recoverable hydrocarbons (TRH), BTEX (benzene, toluene, ethylbenzene and xylenes), polycyclic aromatic hydrocarbons (PAHs) and phenols. Selected samples were analysed for volatile organic compounds (VOCs), volatile halogenated compounds (VHCs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), organophosphorus pesticides (OPP) and by toxicity characteristic leaching procedure (TCLP) for lead, nickel and benzo(a)pyrene.

The sample and results for each area are summarised in Table 1 below.

| Table 1 | Summary | / of | AECOM | 2013 | results |
|---------|---------|------|-------|------|---------|
|         | Gammary |      |       |      | roouno  |

| Area | Samples                                                                                                                         | Results                                                                                                                                                                                                              |
|------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A    | A001 to A019, soil samples<br>collected at depths of 0.0-0.2 m<br>below ground surface (bgs) and<br>0.4 to 0.5 m bgs.           | Asbestos was detected in 10 out of 28<br>samples and exceeded the ASC NEPM<br>(2013) health screening level (HSL) for<br>commercial/industrial land use (HSL D) of<br>0.001% w/w of FA/AF in 8 of the 28<br>samples. |
| В    | B001 to B030, soil samples<br>collected at depths of 0.0-0.2<br>metres below ground surface<br>(m bgs) and 0.4 to 0.5 m bgs     | Asbestos was detected in 11 out of 33<br>samples and exceeded the ASC NEPM<br>(2013) health screening level (HSL) for<br>commercial/industrial land use (HSL D) of<br>0.001% w/w of FA/AF in 8 of the 28<br>samples. |
| С    | C003 to C010, soils samples<br>collected at depths of 0.0-0.2 m<br>bgs and in some locations<br>depths between 0.4 to 2.0 m bgs | Asbestos was detected and exceeded<br>the ASC NEPM (2013) health screening<br>level (HSL) for commercial/industrial land<br>use (HSL D) of 0.001% w/w in 1 out of 23<br>samples.                                     |

The results were also compared to the NSW EPA (2009) *Waste Classification Guidelines* since revised in 2014. The tabulated analytical results from AECOM 2013 are provided in Appendix B.

# 3.0 Sampling Methodology

## 3.1 Data Quality Objectives

The Data Quality Objectives (DQOs) steps for these works are described below.

Table 2 Data Quality Objectives

| DQO Steps |                                         | Details of DQO Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.        | State the<br>Problem                    | Certain pipes within the Site contained friable asbestos lagging and gaskets. This asbestos contaminated the underlying soils and as such these soils require removal. It is proposed to excavate the asbestos contaminated soil and place it in an on-site containment cell. Further characterisation of the volume and extent of the asbestos contaminated soil for different waste classifications was required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 2.        | Identify the<br>Decisions               | <ul> <li>Based on the objectives listed in Section 1.1 of this report, the principal decisions that need to be made are:</li> <li>What is the quantity and extent of soil: <ul> <li>Classified as Special Waste (Asbestos) and GSW or RSW?</li> <li>Classified as Special Waste (Asbestos) and Hazardous Waste?</li> <li>Suitable to remain <i>in situ</i> (i.e. no Asbestos)?</li> </ul> </li> <li>What is the leachability of the soils to be placed within the containment cell?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 3.        | Identify the<br>information<br>inputs   | <ul> <li>The primary inputs required include:</li> <li>Field results/observations including previous AECOM 2013 report.</li> <li>Laboratory soil and leachate analytical results.</li> <li>Assessment of the suitability of the data through the assessment of data quality indicators (DQIs), namely precision, accuracy, representativeness, completeness and comparability (PARCC) parameters (see Section 2.2).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4.        | Define the<br>Study<br>Boundaries       | <ul> <li>Lateral: the boundary of the characterisation works are shown on Figure 2 in<br/>Appendix A.</li> <li>Vertical: the maximum depth of investigation was 2 m.</li> <li>Temporal: Historical soil and leachate analytical data from the previous sampling<br/>conducted in October 2013.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 5.        | Develop an<br>Analytical<br>Approach    | <ul> <li>Site specific data was utilised to focus on potential sources of contamination and likely chemicals of potential concern (COPC).</li> <li>Sampling ratios, quality assurance/quality control (QA/QC) sampling and laboratory analysis were based on Australian Standards and National Environmental Protection Measure (NEPM) guidelines.</li> <li>AECOM standard sampling methodology was followed for sample collection and preservation.</li> <li>Laboratories utilised were National Association of Testing Authorities (NATA) approved for the analyses undertaken.</li> <li>The decision rules for the investigation was the comparison of the soil results to the NSW EPA (2014) <i>Waste Classification Guidelines</i> and asbestos quantification results to the ASC NEPM (2013) investigation levels.</li> </ul>                                                                                                                                                                                           |  |  |  |
| 6.        | Specify Limits<br>on Decision<br>Errors | <ul> <li>There are two types of decision errors:</li> <li>Sampling errors, which occur when samples collected are not representative of the conditions within the investigation area; and</li> <li>Measurement errors, which occur during sampling collection, handling, preparation, analysis and data reduction.</li> <li>An assessment was made as to the likelihood of a decision error being made based on the results of a QA/QC assessment and the closeness of the data to assessment criteria. Decision criteria for QA/QC measures are defined in Appendix D.</li> <li>A decision on the acceptance of the analytical data was made on the basis of the data quality indicators (DQI) in the context of the precision, accuracy, representativeness, completeness and comparability (PARCC) parameters as follows.</li> <li>Precision: A quantitative measure of the variability (or reproducibility) of data;</li> <li>Accuracy: A quantitative measure of the closeness of reported data to the "true"</li> </ul> |  |  |  |

| DQ | O Steps                | Details of DQO Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                        | <ul> <li>value;</li> <li>Representativeness: The confidence (expressed qualitatively) that data are representative of each media present on site;</li> <li>Completeness: A measure of the amount of useable data from a data collection activity; and</li> <li>Comparability: The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.</li> <li>Specific limits for this project are in accordance with the appropriate guidance in NEPM (2013), appropriate indicators of data quality, and standard procedures for field sampling and handling and are summarised in Section 3.3. The step also examines the certainty of conclusive statements based on the available site data collected.</li> </ul> |
| 7. | Optimise the<br>Design | Based on the previous Steps 1 to 6 of the DQO process, the design (i.e. scope of works or sample and analysis quality plan) for obtaining the required data (i.e. proposed field and laboratory programs) is presented below in Section 3.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# 3.2 Sample and Analysis Quality Plan (SAQP)

The scope of works undertaken for this investigation is detailed in the following sub-sections.

#### 3.2.1 Soil Sample Analytical Plan and Rationale

The detailed soil sample analytical plan and the rationale for the sampling locations completed are included in Table 1 in Appendix C. The following soil analyses were completed:

- 35 primary samples, 4 intra-laboratory duplicates and 3 inter-laboratory duplicates were analysed for metals (arsenic, beryllium, cadmium, chromium, lead, molybdenum, nickel, selenium, silver and mercury), BTEXN (benzene, toluene, ethylbenzene, xylenes and naphthalene), total petroleum hydrocarbons (TPH), benzo(a)pyrene (BaP) and asbestos (absence/presence).
- 14 primary samples were analysed for asbestos quantification.
- 10 primary samples were analysed by Toxicity Characteristics Leaching Procedure (TCLP) selectively for chromium, lead, nickel, mercury or benzo(a)pyrene.

#### 3.2.2 Soil Sampling Methodology

The soil sampling methodology undertaken for the investigation is summarised in Table 3 below.

 Table 3
 Soil Investigation Methodology Summary

| Activity/Item               | Details                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Field Activities            | <ul> <li>The soil sampling was completed by Kate Pigram a qualified and experienced<br/>environmental scientist on the 14 to 16 March 2016.</li> </ul>                                                                                                                                                                     |  |
| Sampling Method             | - Hand augers were used for the collection of samples.                                                                                                                                                                                                                                                                     |  |
| Target Depth                | - 24 hand augers were advanced to depths ranging between 0.2 and 0.6 m bgs                                                                                                                                                                                                                                                 |  |
| Soil Logging                | - Soil logging was undertaken in general accordance with the Unified Soil Classification<br>System and the AECOM documented standard field procedures. Samples were<br>logged and information was recorded in the field (e.g. soil type, colour, grain size,<br>inclusions, moisture conditions, staining and odour etc.). |  |
| Soil Screening              | - Soil sub-samples were placed in snap-lock plastic bags and the vapour headspace screened in the field for volatile organic compounds (VOCs) using a calibrated photoionisation detector (PID) equipped with a 10.6 eV lamp. Calibration details are provided in Appendix D.                                              |  |
| Soil Sampling               | - Soil was collected directly from the hand auger for each sampling interval and placed into laboratory prepared glass jars with Teflon-lined lids for chemical analysis and a zip lock bag for asbestos analysis. A new pair of disposable nitrile sampling gloves was used to collect each sample.                       |  |
| Quality Control<br>Sampling | <ul> <li>Field duplicates or triplicates were collected and analysed at a rate of 1 sample per<br/>twenty primary samples as part of the soil investigation. One rinsate sample and two</li> </ul>                                                                                                                         |  |

| Activity/Item                 | Details                                                                                                                                                                                                                                                                 |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                               | soil trip blank samples were analysed.                                                                                                                                                                                                                                  |  |  |
| Sample<br>Preservation        | <ul> <li>Soil samples were placed into insulated rigid storage containers chilled with ice. No preservatives were required to be used in the laboratory supplied sampling jars.</li> </ul>                                                                              |  |  |
| Decontamination<br>Procedures | <ul> <li>The hand auger was cleaned between boreholes by brushing off excess soil and<br/>washing. Soil samples were collected by hand, using single use, disposable nitrile<br/>gloves. One rinsate sample was collected off the decontaminated hand auger.</li> </ul> |  |  |
| Disposal of Soil<br>Cuttings  | - Excess soil cuttings from the hand auger were reinstated in the hole.                                                                                                                                                                                                 |  |  |

### 3.3 Quality Assurance / Quality Control

Quality assurance and control measures (QA /QC) were incorporated into the sampling and analysis works to ensure that the specified data quality objectives could be achieved and to demonstrate accuracy, precision, comparability, representativeness and completeness with regard to the data generated.

The Data Quality Indicators (DQIs) listed in Table 4 below are adopted based upon data validation guidance documents published by Standards Australia (SA), National Environmental Protection Council (NEPC) and United States Environmental Protection Agency (US EPA). These include *Standard guide to the investigation and sampling of sites with potentially contaminated soil* (AS 4482.1-2005) Schedule B2 *Site Characterisation* (NEPC 1999, amended 2013), Schedule B3 *Laboratory Analysis of Potentially Contaminated Soils* (NEPC 1999, amended 2013), the US EPA Contract Laboratory Program for Organic Data Review, October 1999; US EPA Contract Laboratory Program for Inorganic Data Review, July 2002; and the US EPA Guidance on Environmental Data Verification and Data Validation, November 2002. The process involves the checking of analytical procedure compliance and an assessment of the accuracy and precision of analytical data from a range of quality control measurements, generated from both the field sampling and analytical programs.

#### Table 4 DQI Program

| DQI       | Field                                                                                                                                                                 | Laboratory                                                                                                                                                                                                        | Acceptability Limits                                                                                                                                                                                           |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Precision | <ul> <li>Standard Operating Procedures<br/>(SOPs) were appropriate and<br/>were complied with</li> <li>Collection of blind and split<br/>duplicate samples</li> </ul> | <ul> <li>Analysis of:</li> <li>Blind duplicate samples<br/>(1 in 20 samples)</li> <li>Split duplicate samples<br/>(1 in 20 samples)</li> <li>Laboratory duplicate<br/>samples</li> </ul>                          | <ul> <li>RPD of 0 to 30%</li> <li>RPD of 0 to 30%</li> <li>&lt;10x LOR = No Limit</li> <li>10-20x LOR = RPD 0% - 30%</li> <li>&gt;20x LOR = RPD 0% - 30%</li> <li>-</li> </ul>                                 |  |
| Accuracy  | <ul> <li>SOPs appropriate and were complied with</li> <li>Collection of rinsate blanks</li> </ul>                                                                     | <ul> <li>Analysis of:</li> <li>Method blanks</li> <li>Matrix spikes</li> <li>Matrix spike duplicates</li> <li>Surrogate spikes</li> <li>Laboratory control samples</li> <li>Laboratory prepared spikes</li> </ul> | <ul> <li>Non-detect for CoC*</li> <li>70 to 130%</li> <li>70 to 130%</li> <li>70 to 130%</li> <li>Dynamic recovery limits are based on statistical evaluation of processed LCS.</li> <li>70 to 130%</li> </ul> |  |

| DQI                | Field                                                                                                                                                                                              | Laboratory                                                                                                                                                                                                                                                          | Acceptability Limits                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Representativeness | <ul> <li>Appropriate media sampled<br/>according to SOP</li> <li>All relevant media sampled</li> </ul>                                                                                             | All samples analysed according to SOP                                                                                                                                                                                                                               |                                                                                                                     |
| Completeness       | <ul> <li>All critical locations sampled</li> <li>All critical samples collected</li> <li>SOPs appropriate and complied with</li> <li>Experienced sampler</li> <li>Documentation correct</li> </ul> | <ul> <li>All critical samples<br/>analysed and all analytes<br/>analysed according to<br/>SOPs</li> <li>Appropriate methods</li> <li>Appropriate LOR</li> <li>Sample documentation<br/>complete</li> <li>Sample holding times as<br/>per ASC NEPM (2013)</li> </ul> | <ul> <li>As per ASC NEPM<br/>(2013)</li> <li>&lt; nominated criteria</li> <li>As per ASC NEPM<br/>(2013)</li> </ul> |
| Comparability      | <ul> <li>Sample SOPs used on each occasion</li> <li>Experienced sampler</li> <li>Climatic conditions</li> <li>Same types of samples collected</li> </ul>                                           | <ul> <li>Same analytical methods<br/>used (including clean-up)</li> <li>Sample LORs</li> <li>Same laboratories (NATA<br/>accredited)</li> <li>Same units</li> </ul>                                                                                                 | <ul> <li>As per ASC NEPM<br/>(2013)</li> <li>&lt; nominated criteria</li> </ul>                                     |

# 4.0 Assessment Criteria

The soil analytical results have been assessed against the *Waste Classification Guidelines, Part 1: Classifying Waste* (NSW EPA, 2014):

- Contaminant Threshold (CT) for General Solid Waste (without leaching data) (CT1) and Restricted Solid Waste (RSW) (CT2)
- Specific Contaminant Concentration (SCC) and TCLP for General Solid Waste (with leaching data) (SCC1 and TCLP1) and Restricted Solid Waste (RSW) (SCC2 and TCLP2)
- For classification of special waste (asbestos), the detection or observation of asbestos is the classification criteria.

The results of soil samples analysed for asbestos quantification were compared to the health screening levels (HSLs) for commercial/industrial land use (HSL D) from the *National Environment Protection (Assessment of Contaminated Land) Measure (NEPM) 1999, National Environment Protection Council Amendment 2013.* Schedule B1, Guideline on Investigation Levels for Soil and Groundwater (ASC NEPM, 2013).

# 5.0 Results

### 5.1 Field Screening and Observations

The VOC field readings from each sample are provided in Table 1 in Appendix C. The VOC readings in the majority of the samples taken were less than 20 ppm with the exception of sample A013.5\_0.4-0.5 (63.8 ppm), A014.5\_0.4-0.5 (47.8 ppm) and BH014\_0.0-0.2 (22.2 ppm).

The soil descriptions are provided in Table 1 in Appendix C.

### 5.2 Analytical Results

The results are tabulated in the following tables in Appendix C and summarised on Figure 2 (Appendix A):

- Table 2: Soil Analytical Results
- Table 3: Asbestos Quantification Results
- Table 4: Soil Field QA/QC Results
- Table 5: Field Rinsate Results

Laboratory analytical reports are provided in Appendix E.

### 5.3 Quality of Analytical Data

A detailed review of the data is provided in the data validation summary reports in Appendix F. No QA/QC issues were identified in the field or laboratory datasets that could have a material implication to decision-making on the project.

# 6.0 Discussion and Conclusions

### 6.1 Asbestos Quantification

Friable asbestos and asbestos fines exceeded the ASC NEPM (2013) HSL D criteria of 0.001% in 67% of all samples analysed that had detections of asbestos in 2013 and 2016 (Figure 2 in Appendix A). The results therefore confirm that all areas along the pipeway where asbestos was detected require removal to reduce the risk posed to site workers and visitors.

### 6.2 Volume Estimates

The main objective of this report was to estimate the volume of asbestos contaminated soil that would be placed in the containment cell. The containment cell will only be able to take asbestos contaminated soil classified as Special Waste (Asbestos)/GSW or RSW. Asbestos contaminated soils classified as Hazardous Waste would require treatment to reduce concentrations to meet RSW or GSW levels or removal from the site. Soils not containing asbestos would remain *in-situ*.

Based on the review of the new and existing data, the areas of soil required to be placed in the on-site containment cell, treated and disposed off-site or left in-situ have been calculated. The extent of each of these areas is shown on Figure 2 in Appendix A. The calculated volumes are listed in Table 5 below.

#### Table 5 Volume estimates

| Soil Category                           |                                                                                                                         | Area (m²) | Volume <sup>1</sup> (m <sup>3</sup> ) |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|
| 1.                                      | Remain in-situ (asbestos not detected)                                                                                  | 34,773    | 6,955                                 |
| 2.                                      | On-site asbestos containment cell [Special Waste<br>(Asbestos)/ General Solid Waste (GSW) or Restricted<br>Waste (RSW)] | 47,214    | 10,268                                |
| 3.                                      | Special Waste (Asbestos)/Hazardous Waste (requires treatment before being placed in containment cell)                   | 14,401    | 2,880                                 |
| Total volume for containment cell (2+3) |                                                                                                                         | 61,614    | 13,148                                |

Bank Cubic Meters (BCM) have been provided to measure the volume of material in the ground prior to excavation The leachability data from AECOM 2013 and the latest data is summarised in Table 6 below. Detections of lead and nickel at concentrations above the laboratory LOR were detected in less than 15 to 30 % of samples analysed respectively. The maximum concentrations of lead and nickel were ten times less than the NSW EPA (2014) TCLP limit for general solid waste. Leachate concentrations of chromium, mercury and benzo(a)pyrene were not detected at concentrations above the laboratory LOR.

Based on these results the potential for concentrations of metals and benzo(a)pyrene to be detected in leachate at concentrations greater than the NSW EPA (2014) TCLP limit for general solid waste is low and acceptable.

| Contaminant    | Number of<br>Results | Number of Detections<br>Over Screening Criteria | TCLP1 Screening<br>Criteria (mg/L) | Range of Results<br>(mg/L) |
|----------------|----------------------|-------------------------------------------------|------------------------------------|----------------------------|
| Chromium       | 2                    | 0                                               | 5                                  | <0.1                       |
| Lead           | 21                   | 3                                               | 5                                  | <0.1 to 0.5                |
| Nickel         | 7                    | 2                                               | 2                                  | <0.1 to 0.2                |
| Mercury        | 3                    | 0                                               | 0.2                                | <0.001                     |
| Benzo(a)pyrene | 10                   | 0                                               | 0.04                               | <0.5                       |

Table 6 2013 and 2016 Leachability
# 7.0 References

AECOM, 2013. Caltex Kurnell (535) Pipeways Contamination Assessment / Characterisation - Stage 2 Report.

ASC NEPM, 2013. National Environment Protection (Assessment of Contaminated Land) Measure (NEPM) 1999, National Environment Protection Council Amendment 2013. Schedule B1, Guideline on Investigation Levels for Soil and Groundwater.

NSW Environment Protection Authority (EPA), 2014. Waste Classification Guidelines.

Kurnell Asbestos Contaminated Soils Management Project Pipeways Asbestos Contaminated Soils Waste Classification Report Commercial-in-Confidence

# Appendix A

# Figures



Caltex Refinery Kurnell, New South Wales



Map Document: (\\ausyd1fp001\Projects\604X\60488804\4. Tech work area\4.6 GIS\working\Asbestos waste cell\_figure 2.mxd)

Kurnell Asbestos Contaminated Soils Management Project Pipeways Asbestos Contaminated Soils Waste Classification Report Commercial-in-Confidence

# Appendix B

# 2013 Results Tables

|                    | AC           | 001          | A            | 002          | A            | 003          | A            | 004          | A            | 205          | A            | 006          | A            | 007          | A            | 800          |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field_ID           | A001_0.0-0.2 | A001_0.4-0.5 | A002_0.0-0.2 | A002_0.4-0.5 | A003_0.0-0.2 | A003_0.4-0.5 | A004_0.0-0.2 | A004_0.4-0.5 | A005_0.0-0.2 | A005_0.4-0.5 | A006_0.0-0.2 | A006_0.4-0.5 | A007_0.0-0.2 | A007_0.4-0.5 | A008_0.0-0.2 | A008_0.4-0.5 |
| Sample_Depth_Range | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      |
| Location_Code      | A001         | A001         | A002         | A002         | A003         | A003         | A004         | A004         | A005         | A005         | A006         | A006         | A007         | A007         | A008         | A008         |
| Sampled_Date_Time  | 21/10/2013   | 23/10/2013   | 21/10/2013   | 23/10/2013   | 21/10/2013   | 23/10/2013   | 21/10/2013   | 23/10/2013   | 21/10/2013   | 23/10/2013   | 19/10/2013   | 23/10/2013   | 19/10/2013   | 23/10/2013   | 19/10/2013   | 23/10/2013   |
| SDG                | ES1322813    | ES1323052    | ES1322746    | ES1323052    | ES1322746    | ES1323052    | ES1322746    | ES1323052    |
| Sample_Type        | Normal       |
|                    |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |

| Chem_         | ChemName                          | output | LOR  | NSW 2014  | NSW 2014  |       |        |        |           |        |       |           |        |        |      |        |      |              |      |       |            |
|---------------|-----------------------------------|--------|------|-----------|-----------|-------|--------|--------|-----------|--------|-------|-----------|--------|--------|------|--------|------|--------------|------|-------|------------|
| Group         |                                   | unit   |      | GSW (CT1) | RSW (CT2) |       |        |        |           |        |       |           |        |        |      |        |      |              |      |       |            |
| TDU           | TRU 00.00                         |        | 40   | 050       | 0000      | 40    | 100    | 40     | 40        | 10     | 40    | 10        | 40     | 40     | 40   | 40     | 10   | 10           | 10   | 40    | 40         |
| IRH           | TRH C6-C9                         | mg/kg  | 10   | 650       | 2600      | <10   | 128    | <10    | <10       | <10    | <10   | <10       | <10    | <10    | <10  | <10    | <10  | <10          | <10  | <10   | 19         |
| (NEPM         | TRH C10-36 (Total)                | mg/kg  | 50   | 10,000    | 40,000    | 5710  | 13,900 | 12,200 | 1090      | 23,000 | <50   | 34,100    | 14,900 | 17,000 | <50  | 42,600 | <50  | 19,700       | 490  | 2800  | 5320       |
| PAHs          | Benzo(a) pyrene                   | mg/kg  | 0.05 | 0.8       | 3.2       | < 0.5 | < 0.5  | < 0.5  | <0.5      | 0.7    | <0.5  | 1         | < 0.5  | <0.5   | <0.5 | 4.2    | <0.5 | 0.5          | <0.5 | < 0.5 | <0.5       |
|               | Sum of PAHs                       | mq/kq  | -    | 200       | 800       | 2.9   | 43.3   | 7.9    | nc        | 17     | nc    | 61.6      | 36.1   | 17     | nc   | 72.2   | nc   | 12.8         | nc   | 9     | 6.7        |
| Phenols       | 2-methylphenol                    | mg/kg  | 0.5  | 4000      | 16000     | <0.5  | < 0.5  | <0.5   | <0.5      | <0.5   | <0.5  | <0.5      | <0.5   | <0.5   | <0.5 | <0.5   | <0.5 | <0.5         | <0.5 | <0.5  | <0.5       |
| CAHs          | Tetrachloroethene                 | mg/kg  | 0.5  | 14        | 56        | -     | < 0.5  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | <0.5       |
|               | Trichloroethene                   | mg/kg  | 0.5  | 10        | 40        | -     | < 0.5  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | < 0.5      |
|               | Vinyl chloride                    | mg/kg  | 5    | 4         | 16        | -     | <5     | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <5           | -    | -     | <5         |
| BIEX          | Benzene                           | mg/kg  | 0.2  | 10        | 40        | < 0.2 | <0.5   | <0.2   | <0.2      | <0.2   | < 0.2 | <0.2      | <0.2   | <0.2   | <0.2 | <0.2   | <0.2 | <0.2         | <0.2 | <0.2  | <0.2       |
|               | Ethylbenzene                      | mg/kg  | 0.5  | 600       | 2400      | <0.5  | <0.5   | <0.5   | <0.5      | < 0.5  | <0.5  | <0.5      | <0.5   | <0.5   | <0.5 | < 0.5  | <0.5 | <0.5         | <0.5 | <0.5  | <0.5       |
|               | Toluene                           | mg/kg  | 0.5  | 288       | 1152      | <0.5  | <0.5   | <0.5   | <0.5      | <0.5   | <0.5  | <0.5      | <0.5   | <0.5   | <0.5 | < 0.5  | <0.5 | <0.5         | <0.5 | < 0.5 | <0.5       |
| Metals        | Arsenic                           | mg/kg  | 4    | 100       | 400       | <5    | <5     | <5     | <5        | <5     | <5    | <5        | <5     | 18     | <5   | 22     | <5   | 10           | <5   | 9     | <5         |
|               | Beryllium                         | mg/kg  | 1    | 20        | 80        | <1    | <1     | <1     | <1        | <1     | <1    | <1        | <1     | <1     | <1   | <1     | <1   | <1           | <1   | <1    | <1         |
|               | Cadmium                           | mg/kg  | 0.4  | 20        | 80        | <1    | <1     | <1     | <1        | <1     | <1    | <1        | <1     | <1     | <1   | <1     | <1   | <1           | <1   | <1    | <1         |
|               | Chromium (hexavalent)             | mg/kg  | 0.5  | 100       | 400       | < 0.5 | <0.5   | <2.5   | <0.5      | 2.1    | <0.5  | 0.9       | <2.5   | <0.5   | <0.5 | < 0.5  | <0.5 | < 0.5        | <0.5 | < 0.5 | < 0.5      |
|               | Lead                              | mg/kg  | 1    | 100       | 400       | 292   | <5     | 17     | <5        | 55     | <5    | 23        | <5     | 28     | <5   | 22     | <5   | 243          | 30   | 151   | 10         |
|               | Mercury                           | mg/kg  | 0.1  | 4         | 16        | 0.2   | <0.1   | <0.1   | <0.1      | <0.1   | <0.1  | <0.1      | 0.1    | <0.1   | <0.1 | <0.1   | <0.1 | 0.2          | <0.1 | 0.5   | <0.1       |
|               | Molybdenum                        | mg/kg  | 1    | 100       | 400       | 4     | <2     | <2     | <2        | <2     | <2    | <2        | <2     | <2     | <2   | <2     | <2   | 6            | <2   | <2    | <2         |
|               | Nickel                            | mg/kg  | 1    | 40        | 160       | 8     | <2     | <2     | <2        | 2      | <2    | 6         | <2     | <2     | <2   | 2      | <2   | 12           | <2   | 4     | <2         |
|               | Selenium                          | mg/kg  | 2    | 20        | 80        | <5    | <5     | <5     | <5        | <5     | <5    | <5        | <5     | <5     | <5   | <5     | <5   | <5           | <5   | <5    | <5         |
|               | Silver                            | mg/kg  | 1    | 100       | 400       | <2    | <2     | <2     | <2        | <2     | <2    | <2        | <2     | <2     | <2   | <2     | <2   | <2           | <2   | <2    | <2         |
| OCP           | a-BHC                             | mg/kg  | 0.05 | -         |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | Aldrin                            | mg/kg  | 0.05 | -         |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | b-BHC                             | mg/kg  | 0.05 | -         |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | chlordane                         | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | d-BHC                             | mg/kg  | 0.05 |           |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | DDT+DDE+DDD                       | mg/kg  | 0.05 |           |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | Dieldrin                          | mg/kg  | 0.05 |           |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | Endosulfan                        | mg/kg  | 0.05 | 60        | 240       | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | Endrin                            | mg/kg  | 0.05 |           |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | Endrin aldehyde                   | mg/kg  | 0.05 |           |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | g-BHC (Lindane)                   | mg/kg  | 0.05 |           |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | < 0.25     |
|               | Heptachlor                        | mg/kg  | 0.05 |           |           | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | < 0.25       | -    | -     | <0.25      |
|               | Heptachlor epoxide                | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.25        | -    | -     | <0.25      |
|               | Sum Scheduled Chemicals           | mg/kg  | -    | <50       | <50       | -     | nc     | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | nc           | -    | -     | nc         |
| OPP           | Chlorpyrifos                      | mg/kg  | 0.05 | 4         | 16        | -     | < 0.25 | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | < 0.25     |
|               | Chlorpyrifos-methyl               | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | <0.25      |
|               | Diazinon                          | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | <0.25      |
|               | Dichlorvos                        | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | <0.25      |
|               | Dimethoate                        | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | <0.25      |
|               | Ethion                            | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | <0.25      |
|               | Fenthion                          | mg/kg  | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | <0.25      |
|               |                                   | ing/kg | 0.05 |           |           | -     | <0.25  | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    |       | <0.25      |
| 01/00         | Nethyl parathion                  | mg/kg  | 0.2  |           |           | -     | <0.2   | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | -            | -    | -     | <0.2       |
| 3000          | Pentachiorophenol                 | mg/kg  | 2    | 250       | 1000      | <2    | <2     | <2     | <2        | <2     | <2    | <2        | <2     | <2     | <2   | <2     | <2   | <2           | <2   | <2    | <2         |
| DOD-          | Sum Moderately Harmiul Pesticides | mg/kg  | -    | 250       | 1000      | nc    | nc     | nc     | nc        | nc     | nc    | nc        | nc     | nc     | nc   | nc     | nc   | nc           | nc   | nc    | nc<br>.0.1 |
| PUBS<br>SVOCa | PCBS (Sum of total)               | mg/kg  | 0.1  | 000       | <50       | -     | <0.1   | -      | -<br>-0 F | -      | -     | -<br>-0 F | -      | -      | -    | -      | -    | <0.2         | -    | -     | <0.1       |
| 30005         | 2,4,5-trichlorophenol             | mg/kg  | 0.5  | 6000      | 32000     | <0.5  | <0.5   | <0.5   | <0.5      | <0.5   | <0.5  | <0.5      | <0.5   | <0.5   | <0.5 | <0.5   | <0.5 | <0.5         | <0.5 | <0.5  | <0.5       |
|               | 2,4,6-thchlorophenoi              | mg/kg  | 0.5  | 40        | 160       | <0.5  | <0.5   | <0.5   | <0.5      | <0.5   | <0.5  | <0.5      | <0.5   | <0.5   | <0.5 | <0.5   | <0.5 | <0.5         | <0.5 | <0.5  | <0.5       |
| VOCa          | 1 1 1 2 tetrapheraethana          | mg/kg  | 5    | 4000      | 16000     | -     | <0     | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0 5         | -    | -     | <0.5       |
| vous          | 1,1,1,2-letrachioroethane         | mg/kg  | 0.5  | 200       | 2400      | -     | <0.5   | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | <0.5       |
|               |                                   | mg/kg  | 0.5  | 000       | 2400      | -     | <0.5   | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | <0.5       |
|               |                                   | mg/kg  | 0.5  | 20        | 04        |       | <0.5   | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.0<br>_0 E | -    | -     | <0.5       |
|               | 1,1,2-monioroethane               | mg/kg  | 0.5  | 24        | 90        | -     | <0.5   | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | <0.5       |
|               | 1, 1-uichiof0ethene               | mg/kg  | 0.5  | 14        | 244       | -     | <0.5   | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | <0.5       |
|               |                                   | mg/kg  | 0.5  | 00        | 344       |       | <0.5   | -      | -         |        | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | <0.5       |
|               |                                   | mg/kg  | 0.5  | 10        | 40        | -     | <0.5   | -      | -         | -      | -     | -         | -      | -      | -    | -      | -    | <0.5         | -    | -     | <0.5       |
|               |                                   | mg/kg  | 0.5  | 10        | 600       |       | <0.5   | -      |           |        | -     | -         |        |        |      | + -    |      | <0.5         | -    | -     | <0.5       |
|               |                                   | mg/kg  | 0.5  | 2000      | 40        |       | <0.5   | -      |           |        | -     | -         |        |        |      | + -    |      | <0.5         | -    | -     | <0.5       |
|               | Chloroform                        | mg/kg  | 0.5  | 2000      | 6000      |       | <0.5   | -      |           |        | -     | -         |        |        |      | + -    |      | <0.5         | -    | -     | <0.5       |
|               | Chiloroloffi                      | mg/kg  | 0.5  | 120       | 480       |       | <0.5   | -      |           |        | -     | -         | -      | -      | -    |        | -    | <0.5         | -    | -     | <0.5       |
|               | OLYICHE                           | mg/Kg  | U.D  | 00        | 240       | -     | <0.5   |        |           |        | -     | -         |        |        |      |        |      | <0.5         | -    | -     | <0.5       |

Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelines* TRH = Total Recoverable Hydrocarbons CT = Contaminant Threshold GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram PERCENT\_WW = percentage weight per weight Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-leach) Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leach) Bold LOR exceeds criteria

|                    | A009         | A010         | A            | 011          | A            | 012          | A            | )13          | A            | 014          | A            | 015          | AC           | J16          | A            | 017          |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field_ID           | A009_0.0-0.2 | A010_0.0-0.2 | A011_0.0-0.2 | A011_0.4-0.5 | A012_0.0-0.2 | A012_0.4-0.5 | A013_0.0-0.2 | A013_0.4-0.5 | A014_0.0-0.2 | A014_0.4-0.5 | A015_0.0-0.2 | A015_0.4-0.5 | A016_0.0-0.2 | A016_0.4-0.5 | A017_0.0-0.2 | A017_0.4-0.5 |
| Sample_Depth_Range | 0-0.2        | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      |
| _ocation_Code      | A009         | A010         | A011         | A011         | A012         | A012         | A013         | A013         | A014         | A014         | A015         | A015         | A016         | A016         | A017         | A017         |
| Sampled_Date_Time  | 19/10/2013   | 19/10/2013   | 19/10/2013   | 22/10/2013   | 19/10/2013   | 22/10/2013   | 19/10/2013   | 22/10/2013   | 19/10/2013   | 21/10/2013   | 19/10/2013   | 21/10/2013   | 19/10/2013   | 21/10/2013   | 19/10/2013   | 21/10/2013   |
| SDG                | ES1322746    | ES1322746    | ES1322746    | ES1323052    | ES1322746    | ES1323052    | ES1322746    | ES1323052    | ES1322746    | ES1322899    | ES1322746    | ES1322899    | ES1322746    | ES1322899    | ES1322746    | ES1322899    |
| Sample_Type        | Normal       |
|                    |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |

| Chem_<br>Group | ChemName                          | output<br>unit | LOR  | NSW 2014<br>GSW (CT1) | NSW 2014<br>RSW (CT2) |         |         |        |       |        |       |        |        |       |       |       |       |       |        |          |       |
|----------------|-----------------------------------|----------------|------|-----------------------|-----------------------|---------|---------|--------|-------|--------|-------|--------|--------|-------|-------|-------|-------|-------|--------|----------|-------|
| TRH            | TRH C6-C9                         | mg/kg          | 10   | 650                   | 2600                  | <10     | <10     | <10    | <10   | <10    | 21    | <10    | 10     | <10   | <10   | <10   | <10   | <10   | 36     | <10      | <10   |
| (NEPM          | TRH C10-36 (Total)                | mg/kg          | 50   | 10,000                | 40,000                | 144,000 | 132,000 | 29,300 | <50   | 20,100 | 5270  | 11,200 | 7480   | 220   | <50   | 340   | 3940  | 1680  | 16,600 | <50      | <50   |
| PAHs           | Benzo(a) pyrene                   | mg/kg          | 0.05 | 0.8                   | 3.2                   | <4      | 51.2    | 31.9   | <0.5  | < 0.5  | <0.5  | <0.5   | <0.5   | <0.5  | <0.5  | <0.5  | <0.5  | < 0.5 | 0.6    | <0.5     | < 0.5 |
|                | Sum of PAHs                       | ma/ka          | -    | 200                   | 800                   | 91.4    | 1505.3  | 3000.5 | nc    | 151.7  | 57.9  | 60.5   | 19.2   | nc    | nc    | nc    | nc    | 3.9   | 216.2  | nc       | nc    |
| Phenols        | 2-methylphenol                    | mg/kg          | 0.5  | 4000                  | 16000                 | <4      | <4      | <4     | <0.5  | <0.5   | <0.5  | <0.5   | <0.5   | <0.5  | <0.5  | <0.5  | <0.5  | <0.5  | <0.5   | <0.5     | <0.5  |
| CAHs           | Tetrachloroethene                 | mg/kg          | 0.5  | 14                    | 56                    | -       | -       | -      | -     | <0.5   | <0.5  | <0.5   | <0.5   | -     | -     | -     | -     | -     | <0.5   | <0.5     |       |
|                | Trichloroethene                   | mg/kg          | 0.5  | 10                    | 40                    | -       | -       | -      | -     | <0.5   | <0.5  | <0.5   | <0.5   | -     | -     | -     | -     | -     | <0.5   | <0.5     | -     |
|                | Vinyl chloride                    | mg/kg          | 5    | 4                     | 16                    | -       | -       | -      | -     | <5     | <5    | <5     | <5     | -     | -     | -     | -     | -     | <5     | <5       |       |
| BTEX           | Benzene                           | mg/kg          | 0.2  | 10                    | 40                    | <0.2    | <0.2    | <0.2   | <0.2  | <0.2   | <0.2  | <0.2   | <0.2   | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.5   | <0.2     | <0.2  |
|                | Ethylbenzene                      | mg/kg          | 0.5  | 600                   | 2400                  | <0.5    | <0.5    | <0.5   | <0.5  | <0.5   | <0.5  | <0.5   | <0.5   | <0.5  | <0.5  | <0.5  | <0.5  | <0.5  | <0.5   | <0.5     | <0.5  |
|                | Toluene                           | mg/kg          | 0.5  | 288                   | 1152                  | <0.5    | <0.5    | <0.5   | <0.5  | <0.5   | <0.5  | <0.5   | <0.5   | <0.5  | <0.5  | <0.5  | <0.5  | <0.5  | <0.5   | <0.5     | <0.5  |
| Metals         | Arsenic                           | mg/kg          | 4    | 100                   | 400                   | 9       | 14      | <5     | <5    | 6      | <5    | 12     | <5     | 13    | <5    | 8     | <5    | 12    | <5     | 10       | 20    |
|                | Beryllium                         | mg/kg          | 1    | 20                    | 80                    | <1      | <1      | <1     | <1    | <1     | <1    | <1     | <1     | <1    | <1    | <1    | <1    | <1    | <1     | <1       | <1    |
|                | Cadmium                           | mg/kg          | 0.4  | 20                    | 80                    | 3       | 1       | <1     | <1    | <1     | <1    | <1     | <1     | <1    | <1    | <1    | <1    | 4     | <1     | <1       | <1    |
|                | Chromium (hexavalent)             | mg/kg          | 0.5  | 100                   | 400                   | 18.7    | 14.2    | <0.5   | <0.5  | <0.5   | <0.5  | < 0.5  | <0.5   | < 0.5 | <0.5  | <0.5  | <0.5  | < 0.5 | <0.5   | < 0.5    | <0.5  |
|                | Lead                              | mg/kg          | 1    | 100                   | 400                   | 332     | 131     | <5     | <5    | <5     | <5    | 20     | <5     | 42    | <5    | <5    | <5    | 753   | <5     | 135      | <5    |
|                | Mercury                           | mg/kg          | 0.1  | 4                     | 16                    | 0.3     | 0.4     | <0.1   | <0.1  | <0.1   | <0.1  | 0.1    | <0.1   | 1.2   | <0.1  | <0.1  | <0.1  | 0.4   | <0.1   | 0.2      | <0.1  |
|                | Molybdenum                        | mg/kg          | 1    | 100                   | 400                   | 5       | 4       | <2     | <2    | <2     | <2    | <2     | <2     | <2    | <2    | <2    | <2    | 3     | <2     | 3        | <2    |
|                | Nickel                            | mg/kg          | 1    | 40                    | 160                   | 23      | 27      | <2     | <2    | <2     | <2    | 4      | <2     | 10    | <2    | 2     | <2    | 26    | <2     | 14       | <2    |
|                | Selenium                          | mg/kg          | 2    | 20                    | 80                    | <5      | <5      | <5     | <5    | <5     | <5    | <5     | <5     | <5    | <5    | <5    | <5    | <5    | <5     | <5       | <5    |
|                | Silver                            | mg/kg          | 1    | 100                   | 400                   | <2      | <2      | <2     | <2    | <2     | <2    | <2     | <2     | <2    | <2    | <2    | <2    | <2    | <2     | <2       | <2    |
| OCP            | a-BHC                             | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | < 0.05 | < 0.05 | -     | -     | -     | -     | -     | < 0.25 | < 0.05   | -     |
|                | Aldrin                            | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | < 0.25 | <0.05    | -     |
|                | b-BHC                             | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | <0.25  | <0.05    | -     |
|                | chlordane                         | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | < 0.05 | -     | -     | -     | -     | -     | <0.25  | <0.05    |       |
|                | d-BHC                             | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | < 0.25 | <0.05    |       |
|                | DDT+DDE+DDD                       | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     |       | -     | <0.25  | <0.05    |       |
|                | Dieldrin                          | mg/kg          | 0.05 |                       | 0.40                  | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     |       | -     | <0.25  | <0.05    |       |
|                | Endosultan                        | mg/kg          | 0.05 | 60                    | 240                   | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | <0.25  | <0.05    | -     |
|                | Endrin<br>Endrin oldobudo         | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | <0.25  | <0.05    |       |
|                | a RHC (Lindene)                   | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | <0.25  | <0.05    |       |
|                | g-BHC (Lindane)                   | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | <0.25  | <0.05    | -     |
|                | Heptachlor opovido                | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | <0.25  | <0.05    | -     |
|                | Sum Schodulod Chamicala           | mg/kg          | 0.05 | -50                   | -50                   | -       | -       | -      | -     | <2.5   | <0.25 | <0.05  | <0.05  | -     | -     | -     | -     | -     | <0.25  | <0.05    | -     |
|                | Chlorowrifee                      | mg/kg          | -    | <30                   | <50                   | -       | -       | -      |       | nc     | -0.25 | nc     | 10.05  | -     | -     | -     | -     | -     | TIC    |          | -     |
| OFF            | Chlorpyrilos                      | mg/kg          | 0.05 | 4                     | 10                    |         | -       |        | -     | -      | <0.25 | -      | <0.05  | -     | -     |       |       |       | -      |          |       |
|                | Diazinon                          | mg/kg          | 0.05 |                       |                       |         |         | -      | -     |        | <0.25 | -      | <0.05  |       | -     |       |       |       |        | <u> </u> |       |
|                | Dichlonyos                        | mg/kg          | 0.05 |                       |                       | · .     |         |        |       |        | <0.25 | · .    | <0.05  |       |       |       |       | -     | · .    | <u> </u> | -     |
|                | Dimethoate                        | mg/kg          | 0.05 |                       |                       | · .     |         |        |       |        | <0.25 | · .    | <0.05  |       |       |       |       | -     | · .    | <u> </u> | -     |
|                | Ethion                            | mg/kg          | 0.05 |                       |                       | · .     | -       | -      | -     | -      | <0.25 |        | <0.00  | -     |       |       |       | -     | -      |          | -     |
|                | Eenthion                          | mg/kg          | 0.05 |                       |                       | · .     |         |        |       |        | <0.25 | · .    | <0.00  |       |       |       |       | -     | · .    | <u> </u> | -     |
|                | Malathion                         | mg/kg          | 0.05 |                       |                       | -       | -       | -      | -     | -      | <0.25 | -      | <0.00  | -     | -     | -     | -     | -     | -      | -        | -     |
|                | Methyl parathion                  | ma/ka          | 0.2  |                       |                       | -       | -       | -      | -     | -      | <0.2  | -      | <0.2   | -     | -     | -     | -     | -     | -      | -        | -     |
| SVOC           | Pentachlorophenol                 | ma/ka          | 2    |                       |                       | <8      | <8      | <8     | <2    | <2     | <2    | <2     | <2     | <2    | <2    | <2    | <2    | <2    | <2     | <2       | <2    |
|                | Sum Moderately Harmful Pesticides | ma/ka          | -    | 250                   | 1000                  | nc      | nc      | nc     | nc    | nc     | nc    | nc     | nc     | nc    | nc    | nc    | nc    | nc    | nc     | nc       | nc    |
| PCBs           | PCBs (Sum of total)               | ma/ka          | 0.1  | <50                   | <50                   | -       | -       | -      | -     | <0.2   | <0.1  | <0.1   | <0.1   | -     | -     | -     | -     | -     | <0.1   | <0.1     | -     |
| SVOCs          | 2.4.5-trichlorophenol             | ma/ka          | 0.5  | 8000                  | 32000                 | <4      | <4      | <4     | <0.5  | <0.5   | < 0.5 | < 0.5  | < 0.5  | <0.5  | <0.5  | <0.5  | <0.5  | <0.5  | < 0.5  | <0.5     | <0.5  |
|                | 2.4.6-trichlorophenol             | ma/ka          | 0.5  | 40                    | 160                   | <4      | <4      | <4     | < 0.5 | < 0.5  | < 0.5 | < 0.5  | < 0.5  | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5  | < 0.5    | < 0.5 |
|                | Methyl Ethyl Ketone               | ma/ka          | 5    | 4000                  | 16000                 | -       | -       | -      | -     | <5     | <5    | <5     | <5     | -     | -     | -     | -     | -     | <5     | <5       | -     |
| VOCs           | 1,1,1,2-tetrachloroethane         | mg/kg          | 0.5  | 200                   | 800                   | -       | -       | -      | -     | < 0.5  | < 0.5 | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | <0.5   | < 0.5    | -     |
|                | 1.1.1-trichloroethane             | ma/ka          | 0.5  | 600                   | 2400                  | -       | -       | -      | -     | < 0.5  | < 0.5 | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | < 0.5  | < 0.5    | -     |
| l              | 1,1,2,2-tetrachloroethane         | mg/kg          | 0.5  | 26                    | 104                   | -       | -       | -      | -     | <0.5   | <0.5  | <0.5   | <0.5   | -     | -     | -     | -     | -     | <0.5   | <0.5     | -     |
|                | 1,1,2-trichloroethane             | mg/kg          | 0.5  | 24                    | 96                    | -       | -       | -      | -     | < 0.5  | < 0.5 | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | < 0.5  | < 0.5    | -     |
| l              | 1,1-dichloroethene                | mg/kg          | 0.5  | 14                    | 56                    | -       | -       | -      | -     | <0.5   | <0.5  | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | < 0.5  | < 0.5    | -     |
| l              | 1,2-dichlorobenzene               | mg/kg          | 0.5  | 86                    | 344                   | -       | -       | -      | -     | <0.5   | <0.5  | <0.5   | <0.5   | -     | -     | -     | -     | -     | <0.5   | <0.5     | -     |
| l              | 1,2-dichloroethane                | mg/kg          | 0.5  | 10                    | 40                    | -       | -       | -      | -     | <0.5   | <0.5  | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | < 0.5  | < 0.5    | -     |
|                | 1,4-dichlorobenzene               | mg/kg          | 0.5  | 150                   | 600                   | -       | -       | -      | -     | <0.5   | < 0.5 | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | <0.5   | < 0.5    | -     |
|                | Carbon tetrachloride              | mg/kg          | 0.5  | 10                    | 40                    | -       | -       | -      | -     | <0.5   | <0.5  | <0.5   | <0.5   | -     | -     | -     | -     | -     | <0.5   | <0.5     | -     |
|                | Chlorobenzene                     | mg/kg          | 0.5  | 2000                  | 8000                  | -       | -       | -      | -     | <0.5   | <0.5  | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | < 0.5  | <0.5     |       |
|                | Chloroform                        | mg/kg          | 0.5  | 120                   | 480                   | -       | -       | -      | -     | <0.5   | <0.5  | <0.5   | <0.5   | -     | -     | -     | -     | -     | <0.5   | <0.5     |       |
|                | Styrene                           | mg/kg          | 0.5  | 60                    | 240                   | -       |         | -      |       | <0.5   | < 0.5 | < 0.5  | < 0.5  | -     | -     | -     | -     | -     | < 0.5  | <0.5     | -     |

Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelir*. TRH = Total Recoverable Hydrocarbons CT = Contaminant Threshold GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram PERCENT\_WW = percentage weight per weight Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-le Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leac Bold LOR exceeds criteria

|         |                                   |        |      |           |                    | A            | )18          | A            | )19          |
|---------|-----------------------------------|--------|------|-----------|--------------------|--------------|--------------|--------------|--------------|
|         |                                   |        |      |           | Field_ID           | A018_0.0-0.2 | A018_0.4-0.5 | A019_0.0-0.2 | A019_0.4-0.5 |
|         |                                   |        |      |           | Sample Depth Range | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      |
|         |                                   |        |      |           | Location Code      | A018         | A018         | A019         | A019         |
|         |                                   |        |      |           | Sampled Date Time  | 10/10/2012   | 21/10/2012   | 10/10/2012   | 21/10/2012   |
|         |                                   |        |      |           | Sampled_Date_Time  | T9/10/2013   | Z 1/10/2013  | T9/10/2013   | Z1/10/2013   |
|         |                                   |        |      |           |                    | ES1322746    | ES1322899    | ES1322746    | ES1322899    |
|         |                                   |        |      |           | Sample_Type        | Normal       | Normal       | Normal       | Normal       |
| -       |                                   |        | -    |           |                    |              |              |              |              |
| Chem_   | ChemName                          | output | LOR  | NSW 2014  | NSW 2014           |              |              |              |              |
| Group   |                                   | unit   |      | GSW (CT1) | RSW (CT2)          |              |              |              |              |
| TDU     | TBU 00.00                         |        | 10   | 050       | 0000               | 10           | 10           | 10           | 10           |
| IRH     | TRH C6-C9                         | mg/kg  | 10   | 650       | 2600               | <10          | <10          | <10          | <10          |
| (NEPM   | TRH C10-36 (Total)                | mg/kg  | 50   | 10,000    | 40,000             | <50          | <50          | <50          | <50          |
| PAHs    | Benzo(a) pyrene                   | mg/kg  | 0.05 | 0.8       | 3.2                | <0.5         | <0.5         | < 0.5        | <0.5         |
|         | Sum of PAHs                       | mg/kg  | -    | 200       | 800                | nc           | nc           | nc           | nc           |
| Phenols | 2-methylphenol                    | ma/ka  | 0.5  | 4000      | 16000              | < 0.5        | < 0.5        | < 0.5        | < 0.5        |
| CAHs    | Tetrachloroethene                 | ma/ka  | 0.5  | 14        | 56                 | -            | -            | -            | -            |
|         | Trichloroethene                   | ma/ka  | 0.5  | 10        | 40                 | -            | -            | -            | -            |
|         | Vinvl chloride                    | mg/kg  | 5    | 10        | 16                 |              | -            | _            | _            |
| DTEV    | Reasons                           | mg/kg  | 0.2  | 4         | 10                 |              | -0.2         |              | -0.0         |
| DIEA    | Benzene                           | ng/kg  | 0.2  | 10        | 40                 | <0.2         | <0.2         | <0.2         | <0.2         |
|         | Ethylbenzene                      | mg/kg  | 0.5  | 600       | 2400               | <0.5         | <0.5         | <0.5         | <0.5         |
|         | Toluene                           | mg/kg  | 0.5  | 288       | 1152               | <0.5         | <0.5         | <0.5         | <0.5         |
| Metals  | Arsenic                           | mg/kg  | 4    | 100       | 400                | 7            | <5           | 17           | 6            |
|         | Beryllium                         | mg/kg  | 1    | 20        | 80                 | <1           | <1           | <1           | <1           |
| 1       | Cadmium                           | mg/kg  | 0.4  | 20        | 80                 | <1           | <1           | <1           | <1           |
| 1       | Chromium (hexavalent)             | mg/ka  | 0.5  | 100       | 400                | < 0.5        | < 0.5        | <0.5         | <0.5         |
| 1       | Lead                              | mg/kg  | 1    | 100       | 400                | 58           | 18           | 24           | <5           |
| 1       | Mercury                           | ma/ka  | 01   | 100       | 16                 | -0 1         | -0.1         | 0.1          | <01          |
| 1       | Molyhdonum                        | mg/kg  | V.I  | 4         | 10                 |              | ×0.1         | 0.1          | ×0.1         |
|         | Molybdenum                        | mg/kg  | 1    | 100       | 400                | <2           | <2           | <2           | <2           |
|         | Nickel                            | mg/kg  | 1    | 40        | 160                | 4            | <2           | 5            | <2           |
|         | Selenium                          | mg/kg  | 2    | 20        | 80                 | <5           | <5           | <5           | <5           |
|         | Silver                            | mg/kg  | 1    | 100       | 400                | <2           | <2           | <2           | <2           |
| OCP     | a-BHC                             | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Aldrin                            | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            |
|         | h-BHC                             | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            |
|         | chlordane                         | mg/kg  | 0.05 |           |                    |              |              |              | -            |
|         |                                   | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         |                                   | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | DDT+DDE+DDD                       | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Dieldrin                          | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Endosulfan                        | mg/kg  | 0.05 | 60        | 240                | -            | -            | -            | -            |
|         | Endrin                            | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Endrin aldehyde                   | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | g-BHC (Lindane)                   | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Heptachlor                        | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Heptachlor epoxide                | mg/kg  | 0.05 |           |                    |              | -            | _            | _            |
|         | Rum Scheduled Chemicele           | mg/kg  | 0.05 | -50       | -50                | -            | -            | -            | -            |
| 0.00    | Sum Scheduled Chemicals           | mg/kg  | -    | <50       | <50                | -            | -            | -            | -            |
| OPP     | Chlorpyritos                      | mg/kg  | 0.05 | 4         | 16                 | -            | -            | -            | -            |
|         | Chlorpyrifos-methyl               | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Diazinon                          | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
|         | Dichlorvos                        | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
| 1       | Dimethoate                        | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
| 1       | Ethion                            | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
| 1       | Fenthion                          | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            |
| 1       | Malathion                         | mg/ka  | 0.05 |           |                    | -            | -            | -            | -            |
| 1       | Methyl parathion                  | mg/kg  | 02   |           |                    | -            | -            | -            | -            |
| SVOC    | Pentachlorophenol                 | mg/kg  | 2    |           |                    | -2           | <2           | <2           | <2           |
| 0,000   | Sum Moderately Harmful Posticides | mg/kg  | 2    | 250       | 1000               | 2            | <u>\</u> 2   | ~2           | N2           |
| DC Ro   | PCPs (Sum of total)               | mg/kg  | 0.1  | 200       |                    | 116          | 116          | 116          | 116          |
| PUBS    | PCBs (Sum or total)               | mg/kg  | 0.1  | <50       | <50                | -            | -            | -            | -            |
| SVUUS   | 2,4,5-tricnioropnenol             | mg/kg  | 0.5  | 8000      | 32000              | <0.5         | <0.5         | <0.5         | <0.5         |
|         | 2,4,6-trichlorophenol             | mg/kg  | 0.5  | 40        | 160                | <0.5         | <0.5         | <0.5         | <0.5         |
|         | Methyl Ethyl Ketone               | mg/kg  | 5    | 4000      | 16000              | -            | -            | -            | -            |
| VOCs    | 1,1,1,2-tetrachloroethane         | mg/kg  | 0.5  | 200       | 800                | -            | -            | -            | -            |
| 1       | 1,1,1-trichloroethane             | mg/kg  | 0.5  | 600       | 2400               | -            | -            | -            | -            |
| 1       | 1.1.2.2-tetrachloroethane         | mg/ka  | 0.5  | 26        | 104                | -            | -            | -            | -            |
| 1       | 1 1 2-trichloroethane             | mg/kg  | 0.5  | 24        | 96                 | -            | -            | -            | -            |
| 1       | 1 1-dichloroethene                | ma/ka  | 0.5  | 1/        | 56                 | _            | _            | -            | _            |
| 1       | 1.2 dieblorobonzone               | mg/kg  | 0.5  | 14        | 244                |              | -            |              | -            |
| 1       |                                   | mg/Kg  | 0.5  | ðb        | 344                | -            | -            | -            | -            |
| 1       | 1,2-dichloroethane                | mg/kg  | 0.5  | 10        | 40                 | -            | -            | -            | -            |
| 1       | 1,4-dichlorobenzene               | mg/kg  | 0.5  | 150       | 600                | -            | -            | -            | -            |
| 1       | Carbon tetrachloride              | mg/kg  | 0.5  | 10        | 40                 | -            | -            | -            | -            |
| 1       | Chlorobenzene                     | mg/kg  | 0.5  | 2000      | 8000               | -            | -            | -            | -            |
| 1       | Chloroform                        | mg/ka  | 0.5  | 120       | 480                | -            | -            | -            | -            |
| 1       | Styrene                           | ma/ka  | 0.5  | 60        | 240                | -            | -            | -            | -            |
| L       | 1                                 |        |      |           | _ 1V               |              |              |              |              |

Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelin* TRH = Total Recoverable Hydrocarbons CT = Contaminant Threshold GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram PERCENT\_WW = percentage weight per weight Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-le Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leac Bold LOR exceeds criteria

|                    | E            | 8001         | B002         | В            | 8003         | B004         | B005         | В            | 006          | B007         | B            | 008          | B009         | E            | 3010         | B011         |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field_ID           | B001_0.0-0.2 | B001_0.4-0.5 | B002_0.0-0.2 | B003_0.0-0.2 | B003_0.4-0.5 | B004_0.0-0.2 | B005_0.0-0.2 | B006_0.0-0.2 | B006_0.4-0.5 | B007_0.0-0.2 | B008_0.0-0.2 | B008_0.4-0.5 | B009_0.0-0.2 | B010_0.0-0.2 | B010_0.4-0.5 | B011_0.0-0.2 |
| Sample_Depth_Range | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        |
| Location_Code      | B001         | B001         | B002         | B003         | B003         | B004         | B005         | B006         | B006         | B007         | B008         | B008         | B009         | B010         | B010         | B011         |
| Sampled_Date_Time  | 21/10/2013   | 23/10/2013   | 21/10/2013   | 21/10/2013   | 23/10/2013   | 21/10/2013   | 19/10/2013   | 21/10/2013   | 24/10/2013   | 21/10/2013   | 21/10/2013   | 24/10/2013   | 21/10/2013   | 21/10/2013   | 24/10/2013   | 21/10/2013   |
| SDG                | ES1322813    | ES1323052    | ES1322813    | ES1322813    | ES1323052    | ES1322813    | ES1322746    | ES1322813    | ES1323080    | ES1322813    | ES1322813    | ES1323080    | ES1322813    | ES1322813    | ES1323080    | ES1322813    |
| Sample_Type        | Normal       |
|                    |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |

| Chem_   | ChemName                          | output | LOR  | NSW 2014  | NSW 2014  |        |        |        |      |      |      |      |       |      |       |       |       |       |       |      |      |
|---------|-----------------------------------|--------|------|-----------|-----------|--------|--------|--------|------|------|------|------|-------|------|-------|-------|-------|-------|-------|------|------|
| Group   |                                   | unit   |      | GSW (CT1) | RSW (CT2) |        |        |        |      |      |      |      |       |      |       |       |       |       |       |      |      |
| TRH     | TRH C6-C9                         | mg/kg  | 10   | 650       | 2600      | 401    | <10    | 14     | <10  | <10  | <10  | <10  | <10   | <10  | <10   | <10   | <10   | <10   | <10   | <10  | <10  |
| (NEPM   | TRH C10-36 (Total)                | mg/kg  | 50   | 10,000    | 40,000    | 45,200 | 1390   | 7200   | <50  | <50  | 5060 | <50  | <50   | <50  | <50   | <50   | <50   | <50   | 870   | 110  | 1170 |
| PAHs    | Benzo(a) pyrene                   | ma/ka  | 0.05 | 0.8       | 3.2       | 6.7    | < 0.5  | <0.5   | <0.5 | <0.5 | <0.5 | <0.5 | < 0.5 | <0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | <0.5  | <0.5 | <0.5 |
|         | Sum of PAHs                       | ma/ka  | -    | 200       | 800       | 504.7  | 16     | 8.2    | nc   | nc   | nc   | nc   | nc    | nc   | nc    | nc    | nc    | nc    | nc    | nc   | nc   |
| Phenols | 2-methylphenol                    | ma/ka  | 0.5  | 4000      | 16000     | < 0.5  | < 0.5  | < 0.5  | <0.5 | <0.5 | <0.5 | <0.5 | < 0.5 | <0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | <0.5  | <0.5 | <0.5 |
| CAHs    | Tetrachloroethene                 | ma/ka  | 0.5  | 14        | 56        | < 0.5  | < 0.5  | < 0.5  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Trichloroethene                   | ma/ka  | 0.5  | 10        | 40        | < 0.5  | < 0.5  | < 0.5  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Vinvl chloride                    | ma/ka  | 5    | 4         | 16        | <5     | <5     | <5     | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
| BTEX    | Benzene                           | mg/kg  | 0.2  | 10        | 40        | < 0.5  | <0.2   | <0.2   | <0.2 | <0.2 | <0.2 | <0.2 | <0.2  | <0.2 | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2 | <0.2 |
|         | Ethylbenzene                      | mg/kg  | 0.5  | 600       | 2400      | 3.8    | < 0.5  | <0.5   | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | <0.5  | <0.5 | <0.5 |
|         | Toluene                           | ma/ka  | 0.5  | 288       | 1152      | 7.2    | < 0.5  | < 0.5  | <0.5 | <0.5 | <0.5 | <0.5 | < 0.5 | <0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | <0.5 | <0.5 |
| Metals  | Arsenic                           | ma/ka  | 4    | 100       | 400       | <5     | <5     | <5     | <5   | <5   | 13   | <5   | <5    | <5   | <5    | <5    | <5    | <5    | 19    | <5   | <5   |
|         | Bervllium                         | ma/ka  | 1    | 20        | 80        | <1     | <1     | <1     | <1   | <1   | <1   | <1   | <1    | <1   | <1    | <1    | <1    | <1    | <1    | <1   | <1   |
|         | Cadmium                           | mg/kg  | 0.4  | 20        | 80        | <1     | <1     | <1     | <1   | <1   | <1   | <1   | <1    | <1   | <1    | <1    | <1    | <1    | 1     | <1   | <1   |
|         | Chromium (hexavalent)             | mg/kg  | 0.5  | 100       | 400       | <2.5   | < 0.5  | <0.5   | <0.5 | <0.5 | <0.5 | <0.5 | < 0.5 | <0.5 | < 0.5 | < 0.5 | <0.5  | < 0.5 | <0.5  | <0.5 | <0.5 |
|         | Lead                              | mg/kg  | 1    | 100       | 400       | 55     | <5     | 278    | 238  | 137  | 80   | 49   | <5    | <5   | 45    | 64    | 14    | 14    | 102   | <5   | 9    |
|         | Mercury                           | mg/kg  | 0.1  | 4         | 16        | 0.7    | <0.1   | 0.5    | 0.2  | 0.4  | 0.9  | 0.3  | <0.1  | <0.1 | <0.1  | <0.1  | <0.1  | <0.1  | 4.7   | 0.1  | 0.2  |
|         | Molvbdenum                        | ma/ka  | 1    | 100       | 400       | <2     | <2     | <2     | 6    | 2    | <2   | <2   | <2    | <2   | <2    | <2    | <2    | <2    | 6     | <2   | 26   |
|         | Nickel                            | ma/ka  | 1    | 40        | 160       | 5      | <2     | 7      | 14   | 5    | 19   | 13   | <2    | <2   | 4     | 6     | <2    | 12    | 46    | <2   | 3    |
|         | Selenium                          | ma/ka  | 2    | 20        | 80        | <5     | <5     | <5     | <5   | <5   | <5   | <5   | <5    | <5   | <5    | <5    | <5    | <5    | <5    | <5   | <5   |
|         | Silver                            | mg/kg  | 1    | 100       | 400       | <2     | <2     | <2     | <2   | <2   | <2   | <2   | <2    | <2   | <2    | <2    | <2    | <2    | <2    | <2   | <2   |
| OCP     | a-BHC                             | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Aldrin                            | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | < 0.25 | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | b-BHC                             | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | < 0.25 | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | chlordane                         | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | d-BHC                             | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | < 0.25 | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | DDT+DDE+DDD                       | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | < 0.25 | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Dieldrin                          | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Endosulfan                        | mg/kg  | 0.05 | 60        | 240       | <0.25  | < 0.05 | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Endrin                            | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Endrin aldehyde                   | mg/kg  | 0.05 |           |           | <0.25  | <0.05  | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | g-BHC (Lindane)                   | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Heptachlor                        | mg/kg  | 0.05 |           |           | <0.25  | <0.05  | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Heptachlor epoxide                | mg/kg  | 0.05 |           |           | <0.25  | < 0.05 | <0.25  | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Sum Scheduled Chemicals           | mg/kg  | -    | <50       | <50       | nc     | nc     | nc     | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
| OPP     | Chlorpyrifos                      | mg/kg  | 0.05 | 4         | 16        | -      | < 0.05 | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Chlorpyrifos-methyl               | mg/kg  | 0.05 |           |           | -      | < 0.05 | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Diazinon                          | mg/kg  | 0.05 |           |           | -      | < 0.05 | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Dichlorvos                        | mg/kg  | 0.05 |           |           | -      | <0.05  | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Dimethoate                        | mg/kg  | 0.05 |           |           | -      | <0.05  | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Ethion                            | mg/kg  | 0.05 |           |           | -      | <0.05  | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Fenthion                          | mg/kg  | 0.05 |           |           | -      | <0.05  | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Malathion                         | mg/kg  | 0.05 |           |           | -      | <0.05  | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Methyl parathion                  | mg/kg  | 0.2  |           |           | -      | < 0.2  | -      | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
| SVOC    | Pentachlorophenol                 | mg/kg  | 2    |           |           | <2     | <2     | <2     | <2   | <2   | <2   | <2   | <2    | <2   | <2    | <2    | <2    | <2    | <2    | <2   | <2   |
|         | Sum Moderately Harmful Pesticides | mg/kg  | -    | 250       | 1000      | nc     | nc     | nc     | nc   | nc   | nc   | nc   | nc    | nc   | nc    | nc    | nc    | nc    | nc    | nc   | nc   |
| PCBs    | PCBs (Sum of total)               | mg/kg  | 0.1  | <50       | <50       | <0.2   | <0.1   | <0.1   | -    | -    |      | -    | -     |      | -     | -     | -     | -     | -     |      | -    |
| SVOCs   | 2,4,5-trichlorophenol             | mg/kg  | 0.5  | 8000      | 32000     | <0.5   | < 0.5  | <0.5   | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 | < 0.5 | < 0.5 | <0.5  | < 0.5 | < 0.5 | <0.5 | <0.5 |
|         | 2,4,6-trichlorophenol             | mg/kg  | 0.5  | 40        | 160       | <0.5   | < 0.5  | <0.5   | <0.5 | <0.5 | <0.5 | <0.5 | <0.5  | <0.5 | <0.5  | <0.5  | <0.5  | <0.5  | <0.5  | <0.5 | <0.5 |
|         | Methyl Ethyl Ketone               | mg/kg  | 5    | 4000      | 16000     | <5     | <5     | <5     | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
| VOCs    | 1,1,1,2-tetrachloroethane         | mg/kg  | 0.5  | 200       | 800       | <0.5   | < 0.5  | <0.5   | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | 1,1,1-trichloroethane             | mg/kg  | 0.5  | 600       | 2400      | <0.5   | <0.5   | <0.5   | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | 1,1,2,2-tetrachloroethane         | mg/kg  | 0.5  | 26        | 104       | <0.5   | < 0.5  | <0.5   |      | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | 1,1,2-trichloroethane             | mg/kg  | 0.5  | 24        | 96        | <0.5   | < 0.5  | <0.5   |      | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         |                                   | mg/kg  | 0.5  | 14        | 56        | <0.5   | <0.5   | <0.5   | -    | -    | -    | -    |       | -    | -     | -     | -     | -     | -     | -    | -    |
|         |                                   | mg/kg  | 0.5  | 86        | 344       | <0.5   | <0.5   | <0.5   | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         |                                   | mg/kg  | 0.5  | 10        | 40        | <0.5   | <0.5   | <0.5   | -    | -    | -    | -    |       | -    | -     | -     | -     | -     | -     | -    | -    |
|         |                                   | mg/kg  | 0.5  | 150       | 600       | <0.5   | <0.5   | <0.5   |      | -    | -    | -    |       | -    | -     | -     | -     |       | -     | -    | -    |
|         | Chlorohonzono                     | mg/kg  | 0.5  | 10        | 40        | <0.5   | <0.5   | <0.5   | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Chloroform                        | mg/kg  | 0.5  | 2000      | 8000      | <0.5   | <0.5   | <0.5   | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Chiloroform                       | mg/kg  | 0.5  | 120       | 480       | <0.5   | <0.5   | <0.5   | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |
|         | Stylelle                          | rng/kg | 0.5  | 60        | 240       | <0.5   | <0.0   | <0.5   | -    | -    | -    | -    | -     | -    | -     | -     | -     | -     | -     | -    | -    |

Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelin* TRH = Total Recoverable Hydrocarbons CT = Contaminant Threshold GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram PERCENT\_WW = percentage weight per weight Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-le Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leac Bold LOR exceeds criteria

| DUIZ                                  | B013              | В            | 014          | B015         | B            | 016          | B017         | B            | 018          | B019         | B020         |
|---------------------------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field_ID B012_0.0-0.2 B012_0.         | -0.5 B013_0.0-0.2 | B014_0.0-0.2 | B014_0.4-0.5 | B015_0.0-0.2 | B016_0.0-0.2 | B016_0.4-0.5 | B017_0.0-0.2 | B018_0.0-0.2 | B018_0.4-0.5 | B019_0.0-0.2 | B020_0.0-0.2 |
| Sample_Depth_Range 0-0.2 0.4-0.5      | 0-0.2             | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        |
| Location_Code B012 B012               | B013              | B014         | B014         | B015         | B016         | B016         | B017         | B018         | B018         | B019         | B020         |
| Sampled_Date_Time 21/10/2013 24/10/20 | 13 21/10/2013     | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013   |
| SDG ES1322813 ES1323                  | 80 ES1322813      | ES1322746    | ES1323080    | ES1322746    | ES1322746    | ES1323080    | ES1322746    | ES1322746    | ES1323080    | ES1322746    | ES1322746    |
| Sample_Type Normal Normal             | Normal            | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       |

|         |                                   |         | _    |           | -         |             |              |              |             |        |              |              |              |              |       |              |              |              |
|---------|-----------------------------------|---------|------|-----------|-----------|-------------|--------------|--------------|-------------|--------|--------------|--------------|--------------|--------------|-------|--------------|--------------|--------------|
| Chem_   | ChemName                          | output  | LOR  | NSW 2014  | NSW 2014  |             |              |              |             |        |              |              |              |              |       |              |              |              |
| Group   |                                   | unit    |      | GSW (CT1) | RSW (CT2) |             |              |              |             |        |              |              |              |              |       |              |              |              |
| p       |                                   |         |      |           |           |             |              |              |             |        |              |              |              |              |       |              |              |              |
| TRH     | TRH C6-C9                         | mg/kg   | 10   | 650       | 2600      | <10         | <10          | <10          | <10         | 4320   | <10          | <10          | <10          | <10          | <10   | <10          | <10          | <10          |
| (NEPM   | TRH C10-36 (Total)                | mg/kg   | 50   | 10,000    | 40,000    | <50         | <50          | <50          | 170         | 410    | 350          | 19,000       | 770          | <50          | <50   | <50          | <50          | <50          |
| PAHs    | Benzo(a) pyrene                   | ma/ka   | 0.05 | 0.8       | 32        | <0.5        | <0.5         | <0.5         | <0.5        | <0.5   | <0.5         | 81           | <0.5         | <0.5         | <0.5  | <0.5         | <0.5         | <0.5         |
| 17410   | Sum of BAHo                       | mg/kg   | 0.00 | 200       | 800       | 10.0        | 0.0          | 0.0          | 0.0         | 0.0    | 0.0          | 150.6        | 7.0          | 0.0          | 10.0  | 10:0         | 0.0          | 0.0          |
| Dhanala | Sull of Aris                      | mq/kq   | 0.5  | 200       | 1000      | 10          | 10           | 10           | 10          | 10     | 10           | 103.0        | 1.5          | 10           |       | 10           | 10           | 10           |
| Phenois | 2-methylphenol                    | mg/kg   | 0.5  | 4000      | 16000     | <0.5        | <0.5         | <0.5         | <0.5        | <0.5   | <0.5         | <0.5         | <0.5         | <0.5         | <0.5  | <0.5         | <0.5         | <0.5         |
| CAHs    | Tetrachloroethene                 | mg/kg   | 0.5  | 14        | 56        | -           | -            | -            | -           | <0.5   | -            | <0.5         | -            | -            | -     | -            | -            | -            |
|         | Trichloroethene                   | mg/kg   | 0.5  | 10        | 40        | -           | -            | -            | -           | <0.5   | -            | <0.5         | -            | -            | -     | -            | -            | -            |
|         | Vinyl chloride                    | mg/kg   | 5    | 4         | 16        | -           | -            | -            | -           | <5     | · · ·        | <5           | - 1          | -            | -     | -            | -            | -            |
| BTEX    | Benzene                           | ma/ka   | 0.2  | 10        | 40        | < 0.2       | <0.2         | < 0.2        | < 0.2       | 0.6    | < 0.2        | < 0.2        | < 0.2        | <0.2         | < 0.2 | < 0.2        | < 0.2        | < 0.2        |
|         | Ethylbenzene                      | ma/ka   | 0.5  | 600       | 2400      | <0.5        | <0.5         | <0.5         | <0.5        | 1.4    | <0.5         | <0.5         | <0.5         | <0.5         | <0.5  | <0.5         | <0.5         | <0.5         |
|         | Talvasa                           | mg/kg   | 0.5  | 000       | 2400      | <0.5<br>0.5 | <0.5<br>.0.5 | <0.5<br>.0.5 | <0.5<br>0.5 | 1.4    | <0.5<br>.0.5 | <0.5<br>.0.5 | <0.5<br>.0.5 | <0.5<br>.0.5 | <0.5  | <0.5<br>-0.5 | <0.5<br>.0.5 | <0.5<br>.0.5 |
|         | Toluene                           | mg/kg   | 0.5  | 288       | 1152      | <0.5        | <0.5         | <0.5         | <0.5        | <0.5   | <0.5         | <0.5         | <0.5         | <0.5         | <0.5  | <0.5         | <0.5         | <0.5         |
| Metals  | Arsenic                           | mg/kg   | 4    | 100       | 400       | <5          | <5           | 18           | 7           | <5     | 22           | <5           | <5           | 9            | <5    | <5           | <5           | <5           |
|         | Beryllium                         | mg/kg   | 1    | 20        | 80        | <1          | <1           | <1           | <1          | <1     | <1           | <1           | <1           | <1           | <1    | <1           | <1           | <1           |
|         | Cadmium                           | mg/kg   | 0.4  | 20        | 80        | <1          | <1           | <1           | <1          | <1     | <1           | <1           | <1           | <1           | <1    | <1           | <1           | <1           |
|         | Chromium (hexavalent)             | ma/ka   | 0.5  | 100       | 400       | < 0.5       | < 0.5        | 0.5          | < 0.5       | <2.5   | < 0.5        | < 0.5        | <2.5         | < 0.5        | < 0.5 | < 0.5        | < 0.5        | < 0.5        |
|         | Lead                              | ma/ka   | 1    | 100       | 400       | 32          | 8            | 50           | 44          | <5     | 207          | 11           | <5           | 220          | 45    | 6            | 11           | 7            |
|         | Marour                            | mg/kg   | 0.1  | 100       | 400       | 0.0         | 0.2          | 0.2          |             | -0.1   | 201          | -0.1         | -0.1         | 0.2          |       | 0.1          | -0.1         | -0.1         |
|         | Mercury                           | nig/kg  | 0.1  | 4         | 10        | 0.9         | 0.2          | 0.3          | 0.4         | <0.1   | 1.4          | <0.1         | <0.1         | 0.2          | <0.1  | 0.1          | <0.1         | <0.1         |
|         | Molybdenum                        | mg/kg   | 1    | 100       | 400       | <2          | <2           | <2           | <2          | <2     | <2           | <2           | <2           | 3            | <2    | <2           | <2           | 7            |
|         | Nickel                            | mg/kg   | 1    | 40        | 160       | 5           | <2           | 4            | 6           | <2     | 24           | 3            | <2           | 25           | 19    | 3            | <2           | 4            |
|         | Selenium                          | mg/kg   | 2    | 20        | 80        | <5          | <5           | <5           | <5          | <5     | <5           | <5           | <5           | <5           | <5    | <5           | <5           | <5           |
|         | Silver                            | ma/ka   | 1    | 100       | 400       | <2          | <2           | <2           | <2          | <2     | <2           | <2           | <2           | <2           | <2    | <2           | <2           | <2           |
| OCP     | a-BHC                             | mg/kg   | 0.05 |           | 100       | -           | -            | -            | -           | <0.05  | -            | <0.25        |              | -            | -     | -            | -            | -            |
| 001     | Aldria                            | mg/kg   | 0.05 |           |           |             | -            | -            |             | -0.05  | -            | -0.25        | -            | -            |       | -            | -            | -            |
|         | Aldin                             | ng/kg   | 0.05 |           |           | -           | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            |              | -            |
|         | D-BHC                             | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            |              | -            |
|         | chlordane                         | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            | -            | -            |
|         | d-BHC                             | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | < 0.05 | -            | < 0.25       | -            | -            | -     | -            | -            | -            |
|         | DDT+DDF+DDD                       | ma/ka   | 0.05 |           |           | -           | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            | -            | -            |
|         | Dieldrin                          | ma/ka   | 0.05 |           |           |             | -            | -            |             | <0.05  | _            | <0.25        |              | _            |       | _            |              | _            |
|         | Endoquifon                        | mg/kg   | 0.05 | 60        | 240       |             |              |              |             | -0.05  |              | -0.25        |              |              |       |              |              |              |
|         | Endosulian                        | ng/kg   | 0.05 | 00        | 240       | -           | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            |              | -            |
|         | Endrin                            | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            |              | -            |
|         | Endrin aldehyde                   | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            | -            | -            |
|         | g-BHC (Lindane)                   | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | < 0.05 | -            | <0.25        | -            | -            | -     | -            | -            | -            |
|         | Heptachlor                        | ma/ka   | 0.05 |           |           | -           | -            | -            | -           | < 0.05 | -            | <0.25        | -            | -            | -     | -            | -            | -            |
|         | Hentachlor enoxide                | ma/ka   | 0.05 |           |           |             | -            | -            | -           | <0.05  | -            | <0.25        | -            | -            | -     | -            | -            | -            |
|         | Sum Schodulod Chomicals           | mg/kg   | 0.00 | -50       | <50       |             |              |              |             | 10.00  |              | 10.20        |              |              | 1     |              | 1            |              |
| 0.00    | Sum Scheduled Chemicals           | IIIQ/KQ | -    | <00       | <00       | -           | -            | -            | -           | ΠC     | -            | IIC          | -            | -            | -     | -            |              | -            |
| OPP     | Chiorpyrifos                      | mg/kg   | 0.05 | 4         | 16        | -           | -            | -            | -           | -      | -            | -            | -            | -            | -     | -            |              | -            |
|         | Chlorpyrifos-methyl               | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | -      | -            | -            | -            | -            | -     | -            | -            | -            |
|         | Diazinon                          | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | -      | -            | -            | -            | -            | -     | -            | -            | -            |
|         | Dichlorvos                        | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | -      | -            | -            | -            | -            | -     | -            | -            | -            |
|         | Dimethoate                        | ma/ka   | 0.05 |           |           | -           | -            | -            | -           | -      | -            | -            | -            | -            | -     | -            | -            | -            |
|         | Ethion                            | mg/kg   | 0.05 |           |           |             | -            | -            |             |        | _            |              |              | _            |       | -            | · .          | _            |
|         | Easthion                          | mg/kg   | 0.05 |           |           |             |              |              |             |        |              |              |              |              |       |              |              |              |
|         | renulion                          | mg/Kg   | 0.05 |           |           | -           | -            | -            | -           | -      | -            |              | -            | -            | -     | -            |              |              |
|         | Walathion                         | mg/kg   | 0.05 |           |           | -           | -            | -            | -           | -      | -            |              | -            | -            | -     | -            |              | -            |
|         | Methyl parathion                  | mg/kg   | 0.2  |           |           | -           | -            | -            | -           | -      | -            | -            | -            | -            | -     | -            | -            | -            |
| SVOC    | Pentachlorophenol                 | mg/kg   | 2    |           |           | <2          | <2           | <2           | <2          | <2     | <2           | <2           | <2           | <2           | <2    | <2           | <2           | <2           |
|         | Sum Moderately Harmful Pesticides | ma/ka   | -    | 250       | 1000      | nc          | nc           | nc           | nc          | nc     | nc           | nc           | nc           | nc           | nc    | nc           | nc           | nc           |
| PCBs    | PCBs (Sum of total)               | ma/ka   | 0.1  | <50       | <50       | -           |              | -            | -           | <0.1   | -            | <0.1         | -            | -            | -     | -            | -            | -            |
| SVOCa   | 2.4.5 trichlorophonol             | mg/kg   | 0.5  | 8000      | 22000     | -0.5        | <0 F         | <0 F         | -0.5        | <0.5   | -0.5         | <0.5         | -0.5         | -0.5         | <0 F  | <0 F         | <0 F         | -0.5         |
| 31005   |                                   | nig/kg  | 0.5  | 6000      | 32000     | <0.5        | <0.5         | <0.5         | <0.5        | <0.5   | <0.5         | <0.5         | <0.5         | <0.5         | <0.5  | <0.5         | <0.5         | <0.5         |
|         | 2,4,6-tricnioropnenoi             | mg/ĸg   | 0.5  | 40        | 160       | <0.5        | <0.5         | <0.5         | <0.5        | <0.5   | <0.5         | <0.5         | <0.5         | <0.5         | <0.5  | <0.5         | <0.5         | <0.5         |
|         | Methyl Ethyl Ketone               | mq/kq   | 5    | 4000      | 16000     | -           | -            | -            | -           | <5     | -            | <5           | -            | -            | -     | -            | -            | -            |
| VOCs    | 1,1,1,2-tetrachloroethane         | mg/kg   | 0.5  | 200       | 800       | -           | -            | -            | -           | < 0.5  | -            | < 0.5        | -            | -            | -     | -            | -            | -            |
|         | 1.1.1-trichloroethane             | ma/ka   | 0.5  | 600       | 2400      | -           | -            | -            | -           | < 0.5  | -            | < 0.5        | -            | -            | -     | -            | -            | -            |
|         | 1 1 2 2-tetrachloroethane         | ma/ka   | 0.5  | 26        | 104       | -           | -            | -            | -           | <0.5   | -            | <0.5         | -            | -            | -     | -            | -            | -            |
|         | 1 1 2-trichloroethane             | ma/ka   | 0.5  | 24        | 96        | _           | _            | _            |             | <0.5   |              | <0.5         |              | -            |       | 1            | 1 .          |              |
|         |                                   | mg/kg   | 0.5  | 24        | 30        |             | -            | -            |             | <0.5   | +            | <0.5         |              |              |       |              | + -          |              |
|         | 1,1-alchioroethene                | mg/kg   | 0.5  | 14        | 56        | -           | -            | -            | -           | <0.5   |              | <0.5         | -            |              | -     |              |              |              |
|         | 1,2-dichlorobenzene               | mg/kg   | 0.5  | 86        | 344       | -           | -            | -            | -           | <0.5   | -            | <0.5         | -            | -            | -     | -            | -            | -            |
|         | 1,2-dichloroethane                | mg/kg   | 0.5  | 10        | 40        | -           |              | -            | -           | < 0.5  |              | < 0.5        | -            | -            |       |              | -            |              |
|         | 1.4-dichlorobenzene               | ma/ka   | 0.5  | 150       | 600       | -           | -            | -            | -           | < 0.5  | -            | < 0.5        | -            | -            | -     | -            | -            | -            |
|         | Carbon tetrachloride              | ma/ka   | 0.5  | 10        | 40        | _           |              | -            | -           | <0.5   |              | <0.5         |              |              | -     | i _          | - I          | -            |
|         | Chlorobonzono                     | mg/kg   | 0.5  | 2000      | 9000      |             |              | -            | -           | <0.5   | -            | <0.5         | -            | -            | -     | -            | +            | -            |
|         | Ohloratari                        | mg/kg   | 0.5  | 2000      | 0000      | -           | -            | -            | -           | <0.5   | -            | <0.5         | -            | -            | -     | -            |              | -            |
|         | Chiorotorm                        | mg/kg   | 0.5  | 120       | 480       | -           | -            | -            |             | <0.5   |              | <0.5         |              | -            |       |              |              |              |
| L       | Styrene                           | mg/kg   | 0.5  | 60        | 240       | -           | -            | -            | -           | <0.5   | -            | <0.5         | -            | -            | -     | -            | -            | -            |

Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelir*. TRH = Total Recoverable Hydrocarbons CT = Contaminant Threshold GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram PERCENT\_WW = percentage weight per weight Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-le Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leac Bold LOR exceeds criteria

|                    | BC           | )21          | B022         | BC           | )23          | B024         | B025        | BC           | )26          | E            |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|
| ield_ID            | B021_0.0-0.2 | B021_0.4-0.5 | B022_0.0-0.2 | B023_0.0-0.2 | B023_0.4-0.5 | B024_0.0-0.2 | B025_0.00.2 | B026_0.0-0.2 | B026_0.4-0.5 | B027_0.0-0.2 |
| Sample_Depth_Range | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2       | 0-0.2        | 0.4-0.5      | 0-0.2        |
| .ocation_Code      | B021         | B021         | B022         | B023         | B023         | B024         | B025        | B026         | B026         | B027         |
| Sampled_Date_Time  | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013  | 18/10/2013   | 24/10/2013   | 18/10/2013   |
| SDG                | ES1322746    | ES1323080    | ES1322746    | ES1322746    | ES1323080    | ES1322746    | ES1322746   | ES1322746    | ES1323080    | ES1322746    |
| Sample_Type        | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal      | Normal       | Normal       | Normal       |

|         |                                  |        |      |           |                    | В            | 021          | B022         |              | B023         | B024         | B025        | E            | 3026         | E            | 3027         | B028         |              | 3029         | B030         |
|---------|----------------------------------|--------|------|-----------|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|         |                                  |        |      |           | Field_ID           | B021_0.0-0.2 | B021_0.4-0.5 | B022_0.0-0.2 | B023_0.0-0.2 | B023_0.4-0.5 | B024_0.0-0.2 | B025_0.00.2 | B026_0.0-0.2 | B026_0.4-0.5 | B027_0.0-0.2 | B027_0.4-0.5 | B028_0.0-0.2 | B029_0.0-0.2 | B029_0.4-0.5 | B030_0.0-0.2 |
|         |                                  |        |      |           | Sample_Depth_Range | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2       | 0-0.2        | 0.4-0.5      | 0-0.2        | 0.4-0.5      | 0-0.2        | 0-0.2        | 0.4-0.5      | 0-0.2        |
|         |                                  |        |      |           | Location_Code      | B021         | B021         | B022         | B023         | B023         | B024         | B025        | B026         | B026         | B027         | B027         | B028         | B029         | B029         | B030         |
|         |                                  |        |      |           | Sampled_Date_Time  | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013  | 18/10/2013   | 24/10/2013   | 18/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013   | 24/10/2013   | 18/10/2013   |
|         |                                  |        |      |           | SDG                | ES1322746    | ES1323080    | ES1322746    | ES1322746    | ES1323080    | ES1322746    | ES1322746   | ES1322746    | ES1323080    | ES1322746    | ES1323080    | ES1322746    | ES1322746    | ES1323080    | ES1322746    |
|         |                                  |        |      |           | Sample_Type        | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal      | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       |
| Chom    | ChomNamo                         | output |      | NSW 2014  | NSW 2014           |              |              |              |              |              |              |             |              |              |              |              |              |              |              |              |
| Group   | Cheminalite                      | unit   | LOK  | GSW (CT1) | DSW (CT2)          |              |              |              |              |              |              |             |              |              |              |              |              |              |              |              |
| Group   |                                  | unit   |      | 03W (011) | (612)              |              | -            |              |              |              |              |             |              |              |              |              |              | 1            |              | -            |
| TRH     | TRH C6-C9                        | mg/kg  | 10   | 650       | 2600               | <10          | <10          | <10          | <10          | <10          | <10          | <10         | <10          | <10          | <10          | <10          | <10          | <10          | <10          | <10          |
| (NEPM   | IRH C10-36 (Total)               | mg/kg  | 50   | 10,000    | 40,000             | <50          | <50          | <50          | <50          | <50          | <50          | 120         | <50          | <50          | <50          | <50          | 1620         | <50          | <50          | 1970         |
| PAHS    | Benzo(a) pyrene                  | mg/kg  | 0.05 | 0.8       | 3.2                | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Phonols | 2-methylphenol                   | mg/kg  | 0.5  | 4000      | 16000              | -0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.7         |
| CAHs    | Tetrachloroethene                | mg/kg  | 0.5  | 14        | 56                 | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Trichloroethene                  | mg/kg  | 0.5  | 10        | 40                 | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Vinyl chloride                   | mg/kg  | 5    | 4         | 16                 | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
| BTEX    | Benzene                          | mg/kg  | 0.2  | 10        | 40                 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2        | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
|         | Ethylbenzene                     | mg/kg  | 0.5  | 600       | 2400               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
|         | Toluene                          | mg/kg  | 0.5  | 288       | 1152               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Metals  | Arsenic                          | mg/kg  | 4    | 100       | 400                | <5           | <5           | <5           | 6            | <5           | <5           | <5          | <5           | <5           | <5           | <5           | <5           | 8            | <5           | <5           |
|         | Beryllium                        | mg/kg  | 1    | 20        | 80                 | <1           | <1           | <1           | <1           | <1           | <1           | <1          | <1           | <1           | <1           | <1           | <1           | <1           | <1           | <1           |
|         | Cadmium<br>Chromium (beyayalent) | mg/kg  | 0.4  | 20        | 400                | <1           | <1           | <1           | <1           | <1           | <1           | <1          | <1           | <1           | <1           | <1           | <1           | <1           | <1           | <1           |
|         | Lead                             | mg/kg  | 1    | 100       | 400                | 20           | <5           | <5           | 58           | 12           | 24           | 31          | 10           | <5           | <5           | <5           | 21           | 66           | 9            | 75           |
|         | Mercury                          | ma/ka  | 0.1  | 4         | 16                 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         | 1            | 0.1         | <0.1         | <0.1         | <0.1         | <0.1         | 0.5          | <0.1         | <0.1         | <0.1         |
|         | Molybdenum                       | mg/kg  | 1    | 100       | 400                | <2           | <2           | <2           | <2           | <2           | <2           | <2          | <2           | <2           | <2           | <2           | <2           | <2           | <2           | <2           |
|         | Nickel                           | mg/kg  | 1    | 40        | 160                | 9            | <2           | <2           | 5            | 2            | 16           | 9           | 22           | <2           | 2            | <2           | 5            | 15           | 4            | 41           |
|         | Selenium                         | mg/kg  | 2    | 20        | 80                 | <5           | <5           | <5           | <5           | <5           | <5           | <5          | <5           | <5           | <5           | <5           | <5           | <5           | <5           | <5           |
|         | Silver                           | mg/kg  | 1    | 100       | 400                | <2           | <2           | <2           | <2           | <2           | <2           | <2          | <2           | <2           | <2           | <2           | <2           | <2           | <2           | <2           |
| OCP     | a-BHC                            | mg/kg  | 0.05 |           |                    |              | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Aldrin                           | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | b-BHC                            | mg/kg  | 0.05 |           |                    |              | -            |              | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         |                                  | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           |              | -            | -            | -            | -            | -            | -            | -            |
|         |                                  | mg/kg  | 0.05 |           |                    |              |              |              | -            | -            | -            | -           |              |              | -            | -            |              | -            | -            |              |
|         | Dieldrin                         | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Endosulfan                       | mg/kg  | 0.05 | 60        | 240                | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Endrin                           | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Endrin aldehyde                  | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | g-BHC (Lindane)                  | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Heptachlor                       | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Heptachlor epoxide               | mg/kg  | 0.05 | 50        | 50                 | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Sum Scheduled Chemicals          | mg/kg  | -    | <50       | <50                |              | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
| UPP     | Chlorpyrilos                     | mg/kg  | 0.05 | 4         | 16                 | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Diazinon                         | mg/kg  | 0.05 |           |                    |              | -            | -            | -            | _            | -            | -           | -            | -            | -            | -            | -            | _            | -            | -            |
|         | Dichlorvos                       | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Dimethoate                       | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Ethion                           | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Fenthion                         | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Malathion                        | mg/kg  | 0.05 |           |                    |              | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
| 0.100   | Methyl parathion                 | mg/kg  | 0.2  |           |                    | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
| SVOC    | Pentachlorophenol                | mg/kg  | 2    | 250       | 1000               | <2           | <2           | <2           | <2           | <2           | <2           | <2          | <2           | <2           | <2           | <2           | <2           | <2           | <2           | <2           |
| PCBs    | PCBs (Sum of total)              | mg/kg  | 0.1  | 250       | <50                | 110          | IIC -        | TIC -        | nc -         | TIC -        | TIC -        | -           | iii.         | iic -        | nc -         | -            | IIC -        | TIC -        | 110          | iic          |
| SVOCs   | 2 4 5-trichlorophenol            | mg/kg  | 0.5  | 8000      | 32000              | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| 01000   | 2.4.6-trichlorophenol            | mg/kg  | 0.5  | 40        | 160                | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
|         | Methyl Ethyl Ketone              | mg/kg  | 5    | 4000      | 16000              | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
| VOCs    | 1,1,1,2-tetrachloroethane        | mg/kg  | 0.5  | 200       | 800                | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | 1,1,1-trichloroethane            | mg/kg  | 0.5  | 600       | 2400               | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | 1,1,2,2-tetrachloroethane        | mg/kg  | 0.5  | 26        | 104                | -            |              | -            |              | -            | -            | -           | -            |              | -            | -            | -            | -            |              |              |
|         | 1,1,2-trichloroethane            | mg/kg  | 0.5  | 24        | 96                 | -            |              | -            |              | -            | -            | -           | -            |              | -            | -            | -            | -            | -            | -            |
|         | 1,1-dichloroethene               | mg/kg  | 0.5  | 14        | 56                 | -            |              | -            | -            | -            | -            | -           |              |              | -            | -            |              | -            | -            | -            |
|         | 1,2-aichiorobenzene              | mg/kg  | 0.5  | 86        | 344                | -            |              | -            | -            | -            | -            | -           | -            |              | -            | -            |              | -            |              | -            |
|         | 1.2-uichioroemane                | mg/kg  | 0.5  | 10        | 40                 | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Carbon tetrachloride             | mg/kg  | 0.5  | 10        | 40                 |              |              |              |              |              | -            |             |              |              |              |              |              | -            |              |              |
|         | Chlorobenzene                    | mg/kg  | 0.5  | 2000      | 8000               | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Chloroform                       | mg/kg  | 0.5  | 120       | 480                | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |
|         | Styrene                          | mg/kg  | 0.5  | 60        | 240                | -            | -            | -            | -            | -            | -            | -           | -            | -            | -            | -            | -            | -            | -            | -            |

Notes: NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelin*. TRH = Total Recoverable Hydrocarbons CT = Contaminant Threshold GSW = General Solid Waste Device On State State

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram PERCENT\_WW = percentage weight per weight Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-le Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leac Bold LOR exceeds criteria

|                    |              | C003         |              |              | C004         |              |              | C005         |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field_ID           | C003_0.0-0.2 | C003_0.4-0.5 | C003_0.9-1.0 | C004_0.0-0.2 | C004_0.4-0.5 | C004_0.9-1.0 | C005_0.0-0.2 | C005_0.4-0.5 |
| Sample_Depth_Range | 0-0.2        | 0.4-0.5      | 0.9-1        | 0-0.2        | 0.4-0.5      | 0.9-1        | 0-0.2        | 0.4-0.5      |
| Location_Code      | C003         | C003         | C003         | C004         | C004         | C004         | C005         | C005         |
| Sampled_Date_Time  | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   |
| SDG                | ES1323052    |
| Sample_Type        | Normal       |

#### Chem\_ ChemName LOR **NSW 2014** output . unit GSW (CT1) RSW (CT2) Group TRH TRH C6-C9 mg/kg 650 2600 10 TRH C10-36 (Total) 10,000 40,000 (NEPM 50 mg/kg PAHs Benzo(a) pyrene mg/kg 0.05 0.8 3.2 Sum of PAHs mq/kq 200 800 Phenols 05 2-methylphenol mg/kg 4000 16000 CAHs mg/kg 0.5 Tetrachloroethene 14 56 mg/kg 0.5 10 40 Trichloroethene mg/kg 5 Vinyl chloride 16 BTEX Benzene mg/kg 0.2 10 40 Ethylbenzene mg/kg 0.5 600 2400 Toluene mg/kg 0.5 288 1152 Metals mg/kg mg/kg 400 Arsenic 4 100 1 Beryllium 80 20 Cadmium mg/kg 0.4 80 20 Chromium (hexavalent) mg/kg 0.5 100 400 Lead mg/kg 1 100 400 0.1 Mercury mg/kg 4 16 Molybdenum mg/kg mg/kg 1 100 400 1 160 Nickel 40 Selenium mg/kg 2 80 Silver mg/kg 1 100 400 OCP 0.05 a-BHC mg/kg mg/kg Aldrin 0.05 0.05 b-BHC mg/kg chlordane mg/kg 0.05 d-BHC mg/kg 0.05 DDT+DDE+DDD mg/kg 0.05 Dieldrin mg/kg 0.05 60 240 Endosulfan mg/kg 0.05 Endrin mg/kg 0.05 Endrin aldehyde mg/kg 0.05 g-BHC (Lindane) mg/kg 0.05 Heptachlor mg/kg 0.05 Heptachlor epoxide ma/ka 0.05 mg/kg <50 Sum Scheduled Chemicals -<50 OPP 0.05 Chlorpyrifos mg/kg 4 16 Chlorpyrifos-methyl mg/kg 0.05 Diazinon mg/kg 0.05 Dichlorvos mg/kg 0.05 0.05 Dimethoate mg/kg 0.05 Ethion mg/kg Fenthion mg/kg 0.05 Malathion mg/kg 0.05 Methyl parathion mg/kg 0.2 SVOC Pentachlorophenol ma/ka 2 Sum Moderately Harmful Pesticides 250 1000 mq/kq -PCBs PCBs (Sum of total) mg/kg 0.1 <50 <50 32000 SVOCs 2,4,5-trichlorophenol mg/kg 0.5 8000 2,4,6-trichlorophenol mg/kg 0.5 40 160 Methyl Ethyl Ketone mg/kg 5 4000 16000 VOCs 1,1,1,2-tetrachloroethane 0.5 mg/kg 200 800 1,1,1-trichloroethane 0.5 ma/ka 600 2400 104 1,1,2,2-tetrachloroethane mg/kg 0.5 26 1,1,2-trichloroethane mg/kg 0.5 24 96 1,1-dichloroethene mg/kg 0.5 14 56 0.5 344 1,2-dichlorobenzene mg/kg 86 0.5 1.2-dichloroethane mg/kg 10 40 600 0.5 1,4-dichlorobenzene mg/kg 150 0.5 Carbon tetrachloride mg/kg 10 40 Chlorobenzene mg/kg 0.5 2000 8000 Chloroform mg/kg 0.5 120 480 Styrene ma/ka 0.5 60 240

| C003       | C003       | C003       | C004       | C004       | C004       | C005       | C005       | C005       | C006       | C006       | C006       | C007       | C007       | C008       |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 | 22/10/2013 |
| 501000050  | 501000050  | 501000050  | 504000050  | 504000050  | E01000050  | 504000050  | 501000050  | 504000050  | 504000000  | 504000000  | E04000000  | 501000000  | 50100000   | 501000000  |
| ES1323052  | ES1322899  | ES1322899  | ES1322899  | ES1322899  | ES1322899  | ES1322899  |
| Normal     |
|            | 1          |            | L          |            | 1          | 1.1411140  | 1          | 1          | 1.1411140  |            | 1          | T          |            |            |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 10         | 1.0        | 10         | 10         | 10         | 1.0        | 10         | 4.0        | 1.0        | 10         | 4.0        | 10         | 10         | 10         | 1 4 6      |
| <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        | <10        |
| 29 400     | 20 400     | 590        | 920        | <50        | <50        | 3900       | <50        | 2820       | 20 700     | 500        | 1860       | 310        | 250        | 290        |
| 20,100     | 20,100     | 000        | 020        | 100        | 200        | 0000       |            | 2020       | 20,100     | 000        | 1000       | 010        | 200        | 200        |
| <0.5       | < 0.5      | < 0.5      | < 0.5      | < 0.5      | <0.5       | < 0.5      | < 0.5      | < 0.5      | < 0.5      | <0.5       | <0.5       | <0.5       | < 0.5      | <0.5       |
| 200        | nc         | 00         | 00         | 00         | 00         | nc         | nc         | nc         | 5          | nc         | nc         | nc         | nc         | nc         |
| TIC        | ne         | 5          | lic        | TIC        | TIC        | Tic        | ne         |
| <0.5       | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | <0.5       | < 0.5      | < 0.5      |
|            | _          |            |            | _          | -          | _          | -          | -          | -          | _          |            | -          | _          | -          |
|            | -          | -          | -          | -          | -          |            | -          | -          |            |            |            |            | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| <0.2       | < 0.2      | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       | < 0.2      | <0.2       | <0.2       | < 0.2      | <0.2       | <0.2       | <0.2       |
| -0 F       | -0 F       | :0 E       | -0 F       | -0 E       | -0 F       |
| <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      |
|            | 5          |            |            |            |            |            | 5          | 5          |            |            |            | 5          | .5         |            |
| <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         | <5         |
| <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         |
|            |            |            |            |            |            |            |            |            |            |            |            | 1 .4       |            |            |
| <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         |
| <2.5       | <2.5       | <2.5       | <2.5       | < 0.5      | <5         | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      |
| E E        |            |            | 40         | 20         |            | 104        | .5         | 40         | 64         | 6          | 4.4        | 6          | .5         | 26         |
| 55         | <>         | <0         | 40         | 30         | <2         | 104        | <0         | 42         | 04         | 0          | 14         | 0          | <0         | 30         |
| <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
|            | -          | -          |            |            |            | -          | -          |            | 40         |            |            | -          |            | -0         |
| <2         | <2         | <2         | <2         | <2         | <2         | 4          | <2         | <2         | 10         | <2         | <2         | <2         | <2         | <2         |
| 4          | <2         | <2         | 4          | <2         | <2         | 14         | <2         | 13         | 3          | 4          | 6          | <2         | 12         | 3          |
|            |            |            |            |            |            |            | .5         |            | .5         | .5         | .5         |            | .5         | .5         |
| <0         | <0         | <>         | <0         | <0         | <0         | <0         | <0         | <0         | <0         | <0         | <0         | <0         | <0         | <0         |
| <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |            | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
|            | +          |            | +          | +          | +          |            |            | +          |            | +          |            | +          |            |            |
|            |            | -          |            |            |            |            |            |            |            |            |            | -          |            | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            | +          |            | +          | +          | +          |            | +          | +          |            |            | +          | +          | +          |            |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
|            | +          | -          | +          | +          | +          | 1          | +          | +          |            | +          | 1          | +          | 1          | 1          |
| -          |            | -          |            |            |            | -          | -          |            | -          |            | -          | -          |            | -          |
| -          | -          | -          | -          | -          | -          | _          | -          | -          | -          | -          | -          | -          | -          | -          |
|            | +          | +          | +          | +          | +          | 1          | +          | +          | 1          | +          | 1          | +          | 1          | 1          |
|            |            | -          |            | -          |            | -          | -          | -          | -          | -          | -          | -          |            | -          |
| I          |            |            | I          |            | I          | I          |            |            |            |            | I -        |            | I - T      |            |
|            | -          | -          | -          | -          | -          |            | -          |            |            | -          | -          | -          |            | -          |
| <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         | <2         |
| nc         |
|            |            |            |            |            |            |            |            |            |            |            |            |            | 1          |            |
|            |            |            |            |            |            | -          |            |            | -          | -          | -          |            |            | -          |
| < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      | < 0.5      |
| +0 E       | -0 E       | +0 E       | -0 E       | -0 E       | -0 E       | -0.5       | -0.5       | -0 E       | -0.5       | -0 E       | +0 E       | -0.5       | -0.5       | -0 E       |
| <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| I          |            |            | I          |            | I          | I          |            |            |            |            | I -        |            | I - T      |            |
|            | 1          | 1          | 1          | 1          | 1          | 1          |            | 1          | 1          |            | 1          | 1          | Ì          | 1          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          |            | -          | -          | -          | -          | -          | -          | -          | -          | -          |            | -          |
|            | 1          |            | 1          | 1          | 1          | 1          | 1          | 1          |            | 1          |            | 1          | 1          | 1          |
| -          |            |            |            |            | · · ·      | -          |            |            | -          | -          | -          |            |            | -          |
| I          |            |            | I          |            | I          | I          |            |            |            |            | I -        |            | I - T      |            |
|            | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          |
|            |            | -          |            | -          |            | -          | -          | -          | -          | -          | -          | -          |            | -          |
| -          | -          | -          |            | -          | -          | -          | -          | -          | -          | -          | -          | -          |            | -          |
|            | +          | +          | +          | +          | +          | 1          | +          | +          | 1          | +          | 1          | +          | 1          | 1          |
| -          | -          | -          |            | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| I          |            |            | I          |            | I          | I          |            |            |            |            | I -        | I          | I - T      |            |
| -          | 1          | -          | +          | 1          |            | 1          | -          |            | 1          | 1          | 1          |            | 1          | 1          |
| -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          | -          |
| -          | -          | -          |            | -          | -          | -          | -          | -          | -          | -          | -          | -          |            | -          |
|            | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          |
| -          |            |            |            |            | · · ·      | -          |            |            | -          | -          | -          |            |            | -          |
| I          |            |            | I          |            | I          | I          |            |            |            |            | I -        | I          | I - T      |            |
| L          |            |            |            |            |            |            |            |            |            |            |            |            |            | 1          |

Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water Waste Classification Guidelir. TRH = Total Recoverable Hydrocarbons

CT = Contaminant Threshold

GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram

PERCENT\_WW = percentage weight per weight

Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-le

Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leac Bold LOR exceeds criteria

|              |              | C006         |              | CC           | 07           |              |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| C005_0.8-0.9 | C006_0.0-0.2 | C006_0.9-1.0 | C006_1.2-1.3 | C007_0.4-0.5 | C007_0.7-0.8 | C008_0.0-0.2 |
| 0.8-0.9      | 0-0.2        | 0.9-0        | 1.2-1.3      | 0.4-0.5      | 0.7-0.8      | 0-0.2        |
| C005         | C006         | C006         | C006         | C007         | C007         | C008         |
| 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   |
| ES1323052    | ES1322899    | ES1322899    | ES1322899    | ES1322899    | ES1322899    | ES1322899    |
| Normal       |
|              |              |              |              |              |              |              |

|                    | C008         |              |              | C009         |              |              | С       |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|
| Field_ID           | C008_0.4-0.5 | C008_0.9-1.0 | C009_0.0-0.2 | C009_0.9-1.0 | C009_1.9-2.0 | C010_0.0-0.2 | C010_   |
| Sample_Depth_Range | 0.4-0.5      | 0.9-1        | 0-0.2        | 0.9-1        | 1.9-2        | 0-0.2        | 0.4-0.5 |
| Location_Code      | C008         | C008         | C009         | C009         | C009         | C010         | C010    |
| Sampled_Date_Time  | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2 |
| SDG                | ES1322899    | ES1322899    | ES1322899    | ES1322899    | ES1322899    | ES1322899    | ES132   |
| Sample_Type        | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Norma   |
|                    |              |              |              |              |              |              |         |

|          |                                   |        |      |           |                    | 0000         |              | 1            | 0000         |              | 1            | 0040                |                     |
|----------|-----------------------------------|--------|------|-----------|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------|---------------------|
|          |                                   |        |      |           | ELLID              | 0008         | 0000 0.0.1.0 |              | C009         | 0000 4 0 0 0 | 0040 0 0 0 0 | 0010                |                     |
|          |                                   |        |      |           | Field_ID           | C008_0.4-0.5 | C008_0.9-1.0 | C009_0.0-0.2 | C009_0.9-1.0 | C009_1.9-2.0 | C010_0.0-0.2 | <u>C010_0.4-0.5</u> | <u>C010_0.9-1.0</u> |
|          |                                   |        |      |           | Sample_Depth_Range | 0.4-0.5      | 0.9-1        | 0-0.2        | 0.9-1        | 1.9-2        | 0-0.2        | 0.4-0.5             | 0.9-1               |
|          |                                   |        |      |           | Location_Code      | C008         | C008         | C009         | C009         | C009         | C010         | C010                | C010                |
|          |                                   |        |      |           | Sampled_Date_Time  | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013          | 22/10/2013          |
|          |                                   |        |      |           | SDG                | ES1322899           | ES1322899           |
|          |                                   |        |      |           | Sample_Type        | Normal              | Normal              |
|          |                                   |        |      |           |                    |              |              |              |              |              |              |                     |                     |
| Chem_    | ChemName                          | output | LOR  | NSW 2014  | NSW 2014           |              |              |              |              |              |              |                     |                     |
| Group    |                                   | unit   |      | GSW (CT1) | RSW (CT2)          |              |              |              |              |              |              |                     |                     |
|          |                                   |        |      |           |                    |              |              |              |              |              |              |                     |                     |
| TRH      | TRH C6-C9                         | mg/kg  | 10   | 650       | 2600               | <10          | <10          | <10          | <10          | <10          | <10          | <10                 | <10                 |
| (NEPM    | TRH C10-36 (Total)                | mg/kg  | 50   | 10,000    | 40,000             | <50          | <50          | 2880         | <50          | <50          | 6660         | <50                 | 2330                |
| PAHs     | Benzo(a) pyrene                   | mg/kg  | 0.05 | 0.8       | 3.2                | <0.5         | <0.5         | < 0.5        | <0.5         | < 0.5        | <0.5         | <0.5                | <0.5                |
|          | Sum of PAHs                       | mq/kq  | -    | 200       | 800                | nc                  | nc                  |
| Phenols  | 2-methylphenol                    | mg/kg  | 0.5  | 4000      | 16000              | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5        | <0.5         | < 0.5               | < 0.5               |
| CAHs     | Tetrachloroethene                 | mg/kg  | 0.5  | 14        | 56                 | -            | -            | -            | -            | -            | -            | <0.5                | -                   |
|          | Trichloroethene                   | mg/kg  | 0.5  | 10        | 40                 | -            | -            | -            | -            | -            | -            | <0.5                | -                   |
|          | Vinvl chloride                    | ma/ka  | 5    | 4         | 16                 | -            | -            | -            | -            | -            | -            | <5                  | -                   |
| BTEX     | Benzene                           | ma/ka  | 0.2  | 10        | 40                 | <0.2         | <0.2         | < 0.2        | <0.2         | < 0.2        | <0.2         | <0.2                | <0.2                |
|          | Ethylbenzene                      | ma/ka  | 0.5  | 600       | 2400               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5                | <0.5                |
|          | Toluepe                           | mg/kg  | 0.5  | 288       | 1152               | <0.5         | <0.0         | <0.5         | <0.0         | <0.0         | <0.0         | <0.0                | <0.0                |
| Motolo   | Arconio                           | mg/kg  | 0.5  | 100       | 400                | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5                | 0.5                 |
| IVIELAIS | Aiseilic                          | mg/kg  | 4    | 100       | 400                | <0           | <0           | <0           | <0           | <0           | <0           | <0                  | 0                   |
|          |                                   | mg/kg  | 0.4  | 20        | 00                 | <1           | <1           | <            | <1           | <1           | <            | <1                  | <1                  |
|          |                                   | mg/kg  | 0.4  | 20        | 80                 | <1           | <1           | <1           | <1           | <1           | <1           | <1                  | <1                  |
|          | Chromium (nexavalent)             | mg/kg  | 0.5  | 100       | 400                | <2.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5                | <0.5                |
|          | Lead                              | mg/kg  | 1    | 100       | 400                | <5           | <5           | 7            | <5           | <5           | <5           | <5                  | <5                  |
|          | Mercury                           | mg/kg  | 0.1  | 4         | 16                 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         | <0.1                | <0.1                |
|          | Molybdenum                        | mg/kg  | 1    | 100       | 400                | <2           | <2           | <2           | <2           | <2           | <2           | <2                  | <2                  |
|          | Nickel                            | mg/kg  | 1    | 40        | 160                | <2           | <2           | <2           | <2           | <2           | <2           | <2                  | <2                  |
|          | Selenium                          | mg/kg  | 2    | 20        | 80                 | <5           | <5           | <5           | <5           | <5           | <5           | <5                  | <5                  |
|          | Silver                            | mg/kg  | 1    | 100       | 400                | <2           | <2           | <2           | <2           | <2           | <2           | <2                  | <2                  |
| OCP      | a-BHC                             | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | < 0.05              | -                   |
|          | Aldrin                            | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | < 0.05              | -                   |
|          | h-BHC                             | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | <0.05               | -                   |
|          | chlordane                         | mg/kg  | 0.05 |           |                    |              | -            |              |              |              |              | <0.00               |                     |
|          |                                   | mg/kg  | 0.05 |           |                    |              |              |              |              |              |              | <0.05               |                     |
|          |                                   | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | <0.05               | -                   |
|          | DDT+DDE+DDD                       | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | <0.05               |                     |
|          | Dieldrin                          | mg/kg  | 0.05 |           | 0.10               | -            | -            | -            | -            | -            | -            | <0.05               | -                   |
|          | Endosultan                        | mg/kg  | 0.05 | 60        | 240                | -            | -            | -            | -            | -            | -            | <0.05               | -                   |
|          | Endrin                            | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | <0.05               |                     |
|          | Endrin aldehyde                   | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | <0.05               |                     |
|          | g-BHC (Lindane)                   | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | <0.05               | -                   |
|          | Heptachlor                        | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | < 0.05              | -                   |
|          | Heptachlor epoxide                | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | < 0.05              | -                   |
|          | Sum Scheduled Chemicals           | mg/kg  | -    | <50       | <50                | -            | -            | -            | -            | -            | -            | nc                  | -                   |
| OPP      | Chlorpyrifos                      | mg/kg  | 0.05 | 4         | 16                 | -            | -            | -            | -            | -            | -            | -                   | -                   |
|          | Chlorpyrifos-methyl               | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -                   | -                   |
|          | Diazinon                          | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -                   | -                   |
|          | Dichlorvos                        | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -                   | -                   |
|          | Dimethoate                        | ma/ka  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -                   | -                   |
|          | Ethion                            | mg/kg  | 0.05 |           |                    |              | -            | -            | -            | -            | _            | _                   | -                   |
|          | Eanthian                          | mg/kg  | 0.05 |           |                    |              |              |              |              |              |              |                     |                     |
|          | Melethion                         | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -                   | -                   |
|          | Mathul conthing                   | mg/kg  | 0.05 |           |                    | -            | -            | -            | -            | -            | -            | -                   |                     |
|          | Methyl parathion                  | mg/kg  | 0.2  |           |                    | -            | -            | -            | -            | -            | -            | -                   | -                   |
| SVOC     | Pentachlorophenol                 | mg/kg  | 2    |           |                    | <2           | <2           | <2           | <2           | <2           | <2           | <2                  | <2                  |
|          | Sum Moderately Harmful Pesticides | mg/kg  | -    | 250       | 1000               | nc                  | nc                  |
| PCBs     | PCBs (Sum of total)               | mg/kg  | 0.1  | <50       | <50                | -            | -            | -            | -            | -            | -            | <0.1                | -                   |
| SVOCs    | 2,4,5-trichlorophenol             | mg/kg  | 0.5  | 8000      | 32000              | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5                | <0.5                |
|          | 2,4,6-trichlorophenol             | mg/kg  | 0.5  | 40        | 160                | <0.5         | < 0.5        | <0.5         | <0.5         | < 0.5        | <0.5         | <0.5                | <0.5                |
|          | Methyl Ethyl Ketone               | mg/kg  | 5    | 4000      | 16000              | -            | -            | -            | -            | -            | -            | <5                  | -                   |
| VOCs     | 1,1,1,2-tetrachloroethane         | mg/kg  | 0.5  | 200       | 800                | -            | -            | -            | -            | -            | -            | < 0.5               | -                   |
|          | 1,1,1-trichloroethane             | ma/ka  | 0.5  | 600       | 2400               | -            | -            | -            | -            | -            | -            | < 0.5               | -                   |
|          | 1.1.2.2-tetrachloroethane         | ma/ka  | 0.5  | 26        | 104                | -            | -            | -            | -            | -            | -            | <0.5                | -                   |
|          | 1 1 2-trichloroethane             | ma/ka  | 0.5  | 24        | 90                 |              | -            | - I          | - I          | - I          | - I          | <0.5                | 1                   |
|          | 1 1-dichloroethene                | ma/ka  | 0.5  | 14        | 56                 |              | -            | - I          | - I          | - I          | - I          | <0.5                | 1                   |
|          | 1.2-dichlorobenzeno               | mg/kg  | 0.5  | 86        | 344                | -            | -            |              |              |              | -            | ~0.5                | +                   |
|          | 1.2 dichloroothono                | mg/kg  | 0.5  | 10        | 40                 | -            | -            | -            | -            | -            | -            | <0.5<br>20 F        | +                   |
|          |                                   | mg/kg  | 0.5  | 10        | 40                 | -            | -            |              | -            | -            | -            | <0.5                |                     |
|          | Carbas tates blasid               | mg/Kg  | 0.5  | 150       | 600                | -            | -            |              |              |              | -            | <0.5                |                     |
|          | Carbon tetrachioride              | mg/kg  | 0.5  | 10        | 40                 | -            | -            | -            | -            | -            | -            | <0.5                |                     |
|          | Chlorobenzene                     | mg/kg  | 0.5  | 2000      | 8000               | -            | -            | -            | -            | -            | -            | <0.5                |                     |
|          | Chloroform                        | mg/kg  | 0.5  | 120       | 480                | -            | -            | -            | -            | -            | -            | <0.5                |                     |
|          | Styrene                           | mg/kg  | 0.5  | 60        | 240                | -            | -            | -            | -            | -            | -            | <0.5                | -                   |

# Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelin*. TRH = Total Recoverable Hydrocarbons CT = Contaminant Threshold GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram PERCENT\_WW = percentage weight per weight Shading denotes exceedence of NSW EPA 2014 General Solid Waste Criteria (Contaminant Threshold 1, non-le Shading dneotes exceedence of NSW 2014 Restricted Solid Waste Criteria (Contaminant Threshold 2, non-leac Bold LOR exceeds criteria

|                    | AC           | 001          | AC           | 04           | AC           | )06          | AC           | 07           | AC           | )09          |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field_ID           | A001_0.0-0.2 | A001_0.0-0.2 | A004_0.0-0.2 | A004_0.0-0.2 | A006_0.0-0.2 | A006_0.0-0.2 | A007_0.0-0.2 | A007_0.0-0.2 | A009_0.0-0.2 | A009_0.0-0.2 |
| Sample_Depth_Range | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        |
| Location_Code      | A001         | A001         | A004         | A004         | A006         | A006         | A007         | A007         | A009         | A009         |
| Sampled_Date_Time  | 21/10/2013   | 21/10/2013   | 21/10/2013   | 21/10/2013   | 19/10/2013   | 19/10/2013   | 19/10/2013   | 19/10/2013   | 19/10/2013   | 19/10/2013   |
| Matrix Type        | SOIL         | TCLP         |
| SDG                | ES1322813    | ES1322813    | ES1322813    | ES1322813    | ES1322746    | ES1322746    | ES1322746    | ES1322746    | ES1322746    | ES1322746    |
| Sample_Type        | Normal       |
|                    |              |              |              |              |              |              |              |              |              |              |
| NSW EPA 2014 RSW   |              |              |              |              |              |              |              |              |              |              |

|                | Chemical Name                     | SOIL | TCLP | NSW EPA 2014 | NSW EPA 2014 | NSW EPA 2014 | NSW EPA 2014 RSW |      |     |        |          |      |         |         |      |
|----------------|-----------------------------------|------|------|--------------|--------------|--------------|------------------|------|-----|--------|----------|------|---------|---------|------|
|                |                                   | LOR  | LOR  | GSW (SCC1)   | GSW (TCLP1)  | RSW (SCC2)   | (TCLP2)          |      |     |        |          |      |         |         |      |
|                |                                   |      |      | (mg/kg)      | (µg/L)       | (mg/kg)      | (µq/L)           |      |     |        |          |      |         |         |      |
|                |                                   | 10   |      | 650          |              | 2600         | ,                | <10  |     | <10    | <10      |      | <10     | <10     |      |
| 1000)          | TRH C10-36 (Total)                | 50   |      | 10000        |              | 40000        |                  | 5710 |     | 34 100 | 42 600   |      | 19 700  | 144.000 |      |
| PAHs           | Benzo(a) pyrene                   | 0.05 | 0.5  | 10           | 40           | 23           | 160              | <0.5 |     | 1      | <0.5 4.2 | <0.5 | 0.5     | <4      |      |
| 17410          | Sum of PAHs                       | 0.5  | 0.5  | 200          | 10           | 800          | 100              | 29   |     | 61.6   | 7 722    | 1.5  | 12.8    | 91.4    |      |
| TCLP for Non   | pH (Final)                        | 0.0  | 0.0  | 200          |              | 000          |                  | 2.0  | 49  | 01.0   | 51       | 4.9  | 12.0    | 51.4    | 5    |
| & Semivolatile | pH (Initial)                      |      | 0.1  |              |              |              |                  |      | 61  |        | 88       | 5.7  | 5.6     |         | 67   |
| Apolytoc       | pH (after HCL)                    |      | 0.1  |              |              |              |                  |      | 17  |        | 17       | 1.7  | 17      |         | 17   |
| Analytes       | TCLP Eluid                        |      | 1    |              |              |              |                  |      | 1   |        | 1        | 1    | 1       |         | 1    |
| Phenols        | 2-methylphenol                    | 0.5  |      | 7200         | 200          | 28800        | 800              | <0.5 |     | <0.5   | <0.5     |      | <0.5    | <4      | •    |
| 1 Honolo       | Phenol                            | 0.5  |      | 518          | 14.4         | 2073         | 57.6             | <0.5 |     | <0.5   | <0.5     |      | <0.5    | <4      |      |
| CAHs           | Tetrachloroethene                 | 0.5  |      | 25.2         | 0.7          | 100.8        | 28               | -    |     | -      | -        |      | <0.5    | -       |      |
| 0, 110         | Trichloroethene                   | 0.5  |      | 18           | 0.5          | 72           | 2                | -    |     | -      | -        |      | <0.5    | -       |      |
|                | Vinvl chloride                    | 5    |      | 7.2          | 0.2          | 28.8         | 0.8              | -    |     | -      | -        |      | <5      | -       |      |
| BTEX           | Total Xvlene (ESDAT)              | 0.5  |      | 1800         | 50           | 7200         | 200              | <0.5 |     | 0.5    | <0.5     |      | <0.5    | < 0.5   |      |
| 2.2/           | Benzene                           | 0.2  |      | 18           | 0.5          | 72           | 2                | <0.2 |     | <0.2   | <0.2     |      | <0.2    | <0.2    |      |
|                | Ethylbenzene                      | 0.5  |      | 1080         | 30           | 4320         | 120              | <0.5 |     | < 0.5  | <0.5     |      | <0.5    | < 0.5   |      |
|                | Toluene                           | 0.5  |      | 518          | 1.4          | 2073         | 57.6             | <0.5 |     | < 0.5  | <0.5     |      | <0.5    | <0.5    |      |
| Metals         | Antimony                          | 5    |      |              | 1            |              |                  | <5   |     | <5     | <5       |      | <5      | <5      |      |
|                | Arsenic                           | 4    |      | 500          | 5            | 2000         | 20               | <5   |     | <5     | 22       |      | 10      | 9       |      |
|                | Bervlium                          | 1    |      | 100          | 1            | 400          | 4                | <1   |     | <1     | <1       |      | <1      | <1      |      |
|                | Cadmium                           | 0.4  |      | 100          | 1            | 400          | 4                | <1   |     | <1     | <1       |      | <1      | 3       |      |
|                | Chromium (hexavalent)             | 0.5  |      | 1900         | 5            | 7600         | 20               | <0.5 |     | 0.9    | <0.5     |      | <0.5    | 18.7    |      |
|                | Lead                              | 1    | 100  | 1500         | 5000         | 6000         | 20.000           | 292  | 400 | 23     | 22       |      | 243 300 | 332     | <100 |
|                | Mercury                           | 0.1  |      | 50           | 0.2          | 200          | 0.8              | 0.2  |     | <0.1   | <0.1     |      | 0.2     | 0.3     |      |
|                | Molybdenum                        | 1    |      | 1000         | 5            | 4000         | 20               | 4    |     | <2     | <2       |      | 6       | 5       |      |
|                | Nickel                            | 1    | 100  | 1050         | 2000         | 4200         | 8000             | 8    |     | 6      | 2        |      | 12      | 23      |      |
|                | Selenium                          | 2    |      | 50           | 1            | 200          | 4                | <5   |     | <5     | <5       |      | <5      | <5      |      |
|                | Silver                            | 1    |      | 180          | 5            | 720          | 20               | <2   |     | <2     | <2       |      | <2      | <2      |      |
| OCPs           | a-BHC                             | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | Aldrin                            | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | b-BHC                             | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | chlordane                         | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | d-BHC                             | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | DDT+DDE+DDD                       | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | Dieldrin                          | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | Endrin                            | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | Endrin aldehyde                   | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | g-BHC (Lindane)                   | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | Heptachlor                        | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | Heptachlor epoxide                | 0.05 |      |              |              |              |                  | -    |     | -      | -        |      | <0.25   | -       |      |
|                | Sum Scheduled Chemicals           | -    |      | <50          |              |              |                  | -    |     | -      | -        |      | nc      | -       |      |
| OPPs           | Chlorpyrifos                      | 0.05 |      | 7.5          | 0.2          | 30           | 0.8              | -    |     | -      | -        |      | -       | -       |      |
| SVOC           | Pentachlorophenol                 | 2    |      |              |              |              |                  | <2   |     | <2     | <2       |      | <2      | <8      |      |
|                | Sum Moderately Harmful Pesticides | -    |      | 250          |              |              |                  | nc   |     | nc     | nc       |      | nc      | nc      |      |
| PCBs           | PCBs (Sum of total)               | 0.1  |      | 50           | N/A          | 50           | N/A              | -    |     | -      | -        |      | <0.2    | -       |      |
| SVOCs          | 2,4,5-trichlorophenol             | 0.5  |      | 14400        | 400          | 57600        | 1600             | <0.5 |     | <0.5   | <0.5     |      | <0.5    | <4      |      |
|                | 2,4,6-trichlorophenol             | 0.5  |      | 72           | 2            | 288          | 8                | <0.5 |     | <0.5   | <0.5     |      | <0.5    | <4      |      |
|                | Methyl Ethyl Ketone               | 5    |      | 7200         | 200          | 28800        | 800              | -    |     | -      | -        |      | <5      | -       |      |
| VOCs           | 1,1,1,2-tetrachloroethane         | 0.5  |      | 360          | 10           | 1440         | 40               | -    |     | -      | -        |      | <0.5    | -       |      |
|                | 1,1,1-trichloroethane             | 0.5  |      | 1080         | 30           | 4320         | 120              | -    |     | -      | -        |      | <0.5    | -       |      |
|                | 1,1,2,2-tetrachloroethane         | 0.5  |      | 46.8         | 1.3          | 187.2        | 5.2              | -    |     | -      |          |      | <0.5    | -       |      |
|                | 1,1,2-trichloroethane             | 0.5  |      | 43.2         | 30           | 172.8        | 120              | -    |     | -      |          |      | <0.5    | -       |      |
|                | 1,1-dichloroethene                | 0.5  | I    | 25           | 0.7          | 100          | 2.8              | -    |     | -      | -        |      | <0.5    | -       |      |
|                | 1,2-dichlorobenzene               | 0.5  |      | 155          | 7.5          | 620          | 30               | -    |     | -      |          |      | <0.5    | -       |      |
|                | 1,2-dichloroethane                | 0.5  |      | 18           | 0.5          | 72           | 2                | -    |     | -      |          |      | <0.5    | -       |      |
|                | 1,4-dichlorobenzene               | 0.5  |      | 270          | 7.5          | 1080         | 30               | -    |     | -      |          |      | <0.5    | -       |      |
|                | Carbon tetrachloride              | 0.5  |      | 18           | 0.5          | 72           | 2                | -    |     | -      |          |      | <0.5    | -       |      |
|                | Chlorobenzene                     | 0.5  |      | 3600         | 100          | 14400        | 400              | -    |     | -      |          |      | <0.5    | -       |      |
|                | Chloroform                        | 0.5  |      | 216          | 6            | 864          | 24               | -    |     | -      |          |      | <0.5    | -       |      |
|                | Styrene                           | 0.5  |      | 108          | 3            | 432          | 12               | -    |     | -      | -        |      | <0.5    | -       |      |

Notes: NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelines* TRH = Total Recoverable Hydrocarbons TCLP = Toxicity Characteristic Leaching Procedure

GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram µg/L = micrograms per litre <u>PERCENT\_W</u>W = percentage weight per weight

Shading denotes exceedence of NSW 2008 General Solid Waste - Specific Contaminant Concentration 1 Shading denotes exceedence of NSW 2008 General Solid Waste - Toxicity Characteristics Leaching Procedure 1 Shading denotes exceedence of NSW 2008 Restricted Solid Waste - Specific Contaminant Concentration 2 Shading denotes exceedence of NSW 2008 Restricted Solid Waste - Toxicity Characteristics Leaching Procedure 2

AECOM

OPPs SVOC

PCBs SVOCs

# Table T2 Waste Classification (Leachable) Soil Analytical Results

|                |                                             |      |      |                  |              |                     |                   |            |            |            |            |            | -                 |            |                   |            |            |                   |
|----------------|---------------------------------------------|------|------|------------------|--------------|---------------------|-------------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|
|                |                                             |      |      |                  |              |                     | A010.0.0.0        | 010        | A0         | )11        | A          | 016        | B                 | 001        | B                 | 002        | B          | 003               |
|                |                                             |      |      |                  |              |                     | 0-0.2             | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2             | 0-0.2      | 0-0.2             | 0-0.2      | 0-0.2      | 0-0.2             |
|                |                                             |      |      |                  |              |                     | A010              | A010       | A011       | A011       | A016       | A016       | B001              | B001       | B002              | B002       | B003       | B003              |
|                |                                             |      |      |                  |              |                     | 19/10/2013        | 19/10/2013 | 19/10/2013 | 19/10/2013 | 19/10/2013 | 19/10/2013 | 21/10/2013        | 21/10/2013 | 21/10/2013        | 21/10/2013 | 21/10/2013 | 21/10/2013        |
|                |                                             |      |      |                  |              |                     | SOIL<br>ES1222746 | TCLP       | SOIL       | TCLP       | SOIL       | TCLP       | SOIL<br>ES1222812 | TCLP       | SOIL<br>ES1222812 | TCLP       | SOIL       | TCLP<br>ES1222812 |
|                |                                             |      |      |                  |              |                     | Normal            | Normal     | Normal     | Normal     | Normal     | Normal     | Normal            | Normal     | Field D           | Field D    | Normal     | Normal            |
|                |                                             |      |      |                  | •            |                     |                   |            |            |            |            |            |                   |            |                   |            |            |                   |
|                | Chemical Name                               | SOIL | TCLP | NSW EPA 2014     | NSW EPA 2014 | NSW EPA 2014        |                   |            |            |            |            |            |                   |            |                   |            |            |                   |
|                |                                             | LOR  | LOR  | (mg/kg)          | GSW (ICLPI)  | RSW (SCC2)          |                   |            |            |            |            |            |                   |            |                   |            |            |                   |
| TRH (NEPM      |                                             | 10   |      | (IIIg/Rg)<br>650 | (µg/Ľ)       | 2600                | <10               |            | ~10        |            | <10        |            | 401               |            | 14                |            | <10        |                   |
| 1999)          | TRH C10-36 (Total)                          | 50   |      | 10000            |              | 40000               | 132,000           |            | 29,300     |            | 1680       |            | 45,200            |            | 6280              |            | <50        |                   |
| PAHs           | Benzo(a) pyrene                             | 0.05 | 0.5  | 10               | 40           | 23                  | 51.2              | <2.4       | 31.9       | <2.2       | <0.5       |            | 6.7               | <2.4       | <0.5              |            | <0.5       |                   |
|                | Sum of PAHs                                 | 0.5  | 0.5  | 200              |              | 800                 | 1500              | 48.1       | 3000       | 262        | 3.9        | 5          | 473               | <u>116</u> | 8                 | 5.2        | <0.5       | 5                 |
| & Semivolatile | pH (Final)<br>pH (Initial)                  |      | 0.1  |                  |              |                     |                   | 6.2        |            | 6.4        |            | 8.2        |                   | 8.9        |                   | 8.8        |            | 8.4               |
| Analytes       | pH (after HCL)                              |      | 0.1  |                  |              |                     |                   | 1.7        |            | 1.6        |            | 1.7        |                   | 1.8        |                   | 1.7        |            | 1.7               |
|                | TCLP Fluid                                  |      | 1    |                  |              |                     |                   | 1          |            | 1          |            | 1          |                   | 1          |                   | 1          |            | 1                 |
| Phenols        | 2-methylphenol                              | 0.5  |      | 7200             | 200          | 28800               | <4                |            | <4         |            | <0.5       |            | <0.5              |            | <0.5              |            | <0.5       |                   |
| CAHs           | Tetrachloroethene                           | 0.5  |      | 25.2             | 0.7          | 100.8               | -                 |            | -          |            | <0.5       |            | <0.5              |            | <0.5              |            | -          |                   |
|                | Trichloroethene                             | 0.5  |      | 18               | 0.5          | 72                  | -                 |            | -          |            | -          |            | <0.5              |            | <0.5              |            | -          |                   |
| DTEV           | Vinyl chloride                              | 5    |      | 7.2              | 0.2          | 28.8                | -                 |            | -          |            | -          |            | <5                |            | <5                |            | -          |                   |
| BIEX           | Total Xylene (ESDAT)                        | 0.5  |      | 1800             | 50           | 7200                | <0.5              |            | <0.5       |            | <0.5       | -          | 66.1              |            | <0.5              |            | <0.5       |                   |
|                | Ethylbenzene                                | 0.2  |      | 1080             | 30           | 4320                | <0.2              |            | <0.2       |            | <0.2       |            | 3.8               |            | < 0.2             |            | <0.2       |                   |
|                | Toluene                                     | 0.5  |      | 518              | 1.4          | 2073                | <0.5              |            | <0.5       |            | <0.5       |            | 7.2               |            | <0.5              |            | <0.5       |                   |
| Metals         | Antimony                                    | 5    |      |                  |              |                     | <5                |            | <5         |            | 8          |            | <5                |            | <5                |            | <5         |                   |
|                | Arsenic                                     | 4    |      | 500              | 5            | 2000                | 14                |            | <5         |            | 12         | +          | <5                |            | <5                |            | <5         |                   |
|                | Cadmium                                     | 0.4  |      | 100              | 1            | 400                 | 1                 |            | <1         |            | 4          |            | <1                |            | <1                |            | <1         |                   |
|                | Chromium (hexavalent)                       | 0.5  |      | 1900             | 5            | 7600                | 14.2              |            | <0.5       |            | <0.5       |            | <2.5              |            | <0.5              |            | <0.5       |                   |
|                | Lead                                        | 1    | 100  | 1500             | 5000         | 6000                | 131               | -          | <5         |            | 753        | <100       | 55                | -          | 250               | <100       | 238        | <100              |
|                | Molybdenum                                  | 0.1  |      | 50               | 0.2          | 200                 | 0.4               |            | <0.1       |            | 0.4        |            | 0.7               |            | 0.3               |            | 0.2        |                   |
|                | Nickel                                      | 1    | 100  | 1050             | 2000         | 4200                | 27                |            | <2         |            | 26         |            | 5                 |            | 8                 |            | 14         |                   |
|                | Selenium                                    | 2    |      | 50               | 1            | 200                 | <5                |            | <5         |            | <5         |            | <5                |            | <5                |            | <5         |                   |
|                | Silver                                      | 1    |      | 180              | 5            | 720                 | <2                |            | <2         |            | <2         |            | <2                |            | <2                |            | <2         |                   |
| OCFS           | Aldrin                                      | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          |            | <0.25             |            | <0.25             |            | -          |                   |
|                | b-BHC                                       | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          |            | <0.25             |            | <0.25             |            | -          |                   |
|                | chlordane                                   | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          |            | < 0.25            |            | < 0.25            |            | -          |                   |
|                |                                             | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          | +          | <0.25             |            | <0.25             |            | -          |                   |
|                | Dieldrin                                    | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          |            | <0.25             |            | <0.25             |            | -          |                   |
|                | Endrin                                      | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          |            | <0.25             |            | <0.25             |            | -          |                   |
|                | Endrin aldehyde                             | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          | -          | < 0.25            |            | < 0.25            |            | -          |                   |
|                | Heptachlor                                  | 0.05 |      |                  |              |                     |                   | +          | -          |            | -          |            | <0.25             | +          | <0.25             |            | -          |                   |
|                | Heptachlor epoxide                          | 0.05 |      |                  |              |                     | -                 |            | -          |            | -          |            | <0.25             |            | <0.25             |            | -          |                   |
|                | Sum Scheduled Chemicals                     | -    |      | <50              |              |                     |                   | ļ          | -          |            | -          |            | nc                | ļ          | nc                |            |            |                   |
| OPPs<br>SVOC   | Chlorpyritos<br>Pentachlorophenol           | 0.05 |      | 7.5              | 0.2          | 30                  | 8                 |            | -          |            | -          | +          | -                 |            | -                 |            | -          |                   |
| 3700           | Sum Moderately Harmful Pesticides           | -    |      | 250              |              |                     | nc                |            | nc         |            | nc         |            | nc                |            | nc                |            | nc         |                   |
| PCBs           | PCBs (Sum of total)                         | 0.1  |      | 50               | N/A          | 50                  | -                 |            | -          |            | -          |            | <0.2              |            | <0.1              |            | -          |                   |
| SVOCs          | 2,4,5-trichlorophenol                       | 0.5  |      | 14400            | 400          | 57600               | <4                |            | <4         |            | <0.5       | -          | <0.5              |            | < 0.5             |            | <0.5       |                   |
|                | Z,4,0-utchiorophenoi<br>Methyl Ethyl Ketone | 0.5  |      | 7200             | 200          | <u>∠88</u><br>28800 | <4                |            | <4         |            | <0.5       |            | <0.5              | 1          | <0.5              | 1          | <0.5       |                   |
| VOCs           | 1,1,1,2-tetrachloroethane                   | 0.5  |      | 360              | 10           | 1440                | -                 |            | -          |            | -          |            | <0.5              |            | <0.5              |            | -          |                   |
|                | 1,1,1-trichloroethane                       | 0.5  |      | 1080             | 30           | 4320                | -                 |            | -          |            | -          |            | <0.5              |            | <0.5              |            | -          |                   |
|                | 1,1,2,2-tetrachloroethane                   | 0.5  |      | 46.8             | 1.3          | 187.2               | -                 |            | -          |            | -          |            | <0.5              |            | < 0.5             |            | -          |                   |
|                | 1.1-dichloroethene                          | 0.5  |      | 43.2             | 0.7          | 100                 |                   |            |            |            | -          |            | <0.5              |            | <0.5              |            |            |                   |
|                | 1,2-dichlorobenzene                         | 0.5  |      | 155              | 7.5          | 620                 |                   |            |            |            |            |            | <0.5              |            | <0.5              |            | -          |                   |
|                | 1,2-dichloroethane                          | 0.5  |      | 18               | 0.5          | 72                  | -                 |            | -          |            | -          |            | <0.5              |            | < 0.5             |            | -          |                   |
|                | 1,4-dichlorobenzene                         | 0.5  |      | 270              | 7.5          | 1080                |                   |            | -          |            | -          |            | <0.5              |            | < 0.5             |            | -          |                   |
|                | Chlorobenzene                               | 0.5  |      | 3600             | 100          | 14400               |                   | 1          | -          |            | -          | 1          | <0.5              | 1          | <0.5              | 1          | -          |                   |
|                | Chloroform                                  | 0.5  |      | 216              | 6            | 864                 | -                 |            | -          |            | -          |            | <0.5              |            | <0.5              |            | -          |                   |
|                | Styrene                                     | 0.5  |      | 108              | 3            | 432                 | -                 |            | -          |            | -          |            | <0.5              |            | <0.5              |            | -          |                   |

Notes:

NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelines* TRH = Total Recoverable Hydrocarbons

TCLP = Toxicity Characteristic Leaching Procedure

GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram

 $\mu g/L = micrograms per litre$ <u>PERCENT\_WW</u> = percentage weight per weight

Shading denotes exceedence of NSW 2008 General Solid Waste - Specific Contaminant Concentration 1

Shading denotes exceedence of NSW 2008 General Solid Waste - Toxicity Characteristics Leaching Procedure 1 Shading denotes exceedenc of NSW 2008 Restricted Solid Waste - Specific Contaminant Concentration 2 Shading denotes exceedence of NSW 2008 Restricted Solid Waste - Toxicity Characteristics Leaching Procedure 2

AECOM

# Table T2 Waste Classification (Leachable) Soil Analytical Results

|              |              | _            |              | _                |              | _            |              | -                                                     |            | _            |              |
|--------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|-------------------------------------------------------|------------|--------------|--------------|
| BC           | 010          | BO           | )15          | BC               | )16          | BC           | 017          | BO                                                    | 25         | BC           | )30          |
| B010 0 0-0 2 | B010 0 0-0 2 | B015 0 0-0 2 | B015 0 0-0 2 | B016 0 0-0 2     | B016 0 0-0 2 | B017 0 0-0 2 | B017 0 0-0 2 | B025 04-05                                            | B025 04-05 | B030 0 0-0 2 | B030 0 0-0 2 |
| 0.000.2      | 0.000.2      | 0.000.2      | 0.000.2      | 0.000.2          | 0.000.2      | 0.000.2      | 0.000.2      |                                                       | 0405       | 0.000.2      | 0.000.2      |
| 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2            | 0-0.2        | 0-0.2        | 0-0.2        | 0.4-0.5                                               | 0.4-0.5    | 0-0.2        | 0-0.2        |
| B010         | B010         | B015         | B015         | B016             | B016         | B017         | B017         | B025                                                  | B025       | B030         | B030         |
| 21/10/2012   | 21/10/2012   | 18/10/2012   | 18/10/2012   | 18/10/2012       | 18/10/2012   | 18/10/2012   | 18/10/2012   | 24/10/2012                                            | 24/10/2012 | 18/10/2012   | 18/10/2012   |
| 21/10/2013   | 21/10/2013   | 10/10/2013   | 10/10/2013   | 10/10/2013       | 10/10/2013   | 10/10/2013   | 10/10/2013   | 24/10/2013                                            | 24/10/2013 | 10/10/2013   | 10/10/2013   |
| SOIL         | TCLP         | SOIL         | TCLP         | SOIL             | TCLP         | SOIL         | TCLP         | SOIL                                                  | TCLP       | SOIL         | TCLP         |
| ES1322813    | ES1322813    | FS1322746    | FS1322746    | FS1322746        | FS1322746    | FS1322746    | FS1322746    | FS1323080                                             | ES1323295  | ES1322746    | ES1322746    |
| Nerrad       | Nerral       | Nama         | Name         | Name             |              | Neme         | Neme         | Name                                                  | Namal      | Nama         | Namal        |
| Inormal      | Inormal      | Normal       | Normai       | Normai           | Normal       | Inormal      | Normal       | Normai                                                | Normai     | Normal       | Normal       |
|              |              |              |              |                  |              |              |              |                                                       |            |              |              |
|              |              |              |              |                  |              |              |              |                                                       |            |              |              |
|              |              |              |              |                  |              |              |              |                                                       |            |              |              |
|              |              |              |              |                  |              |              |              |                                                       |            |              |              |
|              |              |              |              |                  |              |              |              |                                                       |            |              |              |
|              |              |              |              |                  |              |              |              |                                                       |            |              |              |
| <10          |              | <10          |              | <10              |              | <10          |              | <10                                                   |            | <10          |              |
| 070          |              | 250          |              | 10,000           |              | .50          |              | 4500                                                  |            | 1070         |              |
| 870          |              | 300          |              | 19,000           |              | <00          |              | 1520                                                  |            | 1970         |              |
| <0.5         |              | <0.5         |              | 8.1              | <0.5         | <0.5         |              | 1.1                                                   | <0.5       | <0.5         |              |
| <0.5         |              | <0.5         |              | 160              | 2            | <0.5         |              | 81                                                    | nc         | 07           |              |
|              |              | 10.0         | 4.0          | 100              |              |              | 4.0          | 0.1                                                   | 6.0        | 0.1          | E 7          |
|              | 5.5          |              | 4.9          |                  | 3            |              | 4.9          |                                                       | 0.3        |              | J./          |
|              | 9            |              | 7.8          |                  | 8.5          |              | 8            |                                                       | 1.6        |              | 9.1          |
|              | 1.8          |              | 17           |                  | 18           |              | 17           |                                                       | 1          |              | 44           |
|              |              |              |              |                  |              |              |              |                                                       | 4.0        |              |              |
|              |              |              |              |                  |              |              |              |                                                       | 4.9        |              | 1            |
| <0.5         |              | < 0.5        |              | <0.5             |              | < 0.5        |              | <0.5                                                  |            | < 0.5        |              |
| <0.5         |              | <0.5         |              | <0.5             |              | <0.5         |              |                                                       |            | <0.5         |              |
| -0.0         |              | -0.0         |              | -0.5             |              | -0.0         |              |                                                       |            | -0.0         |              |
|              |              | -            |              | <0.5             |              |              |              |                                                       |            | -            |              |
| -            |              | -            |              | < 0.5            |              |              |              |                                                       |            | -            |              |
| -            |              | -            |              | <5               |              | -            |              |                                                       |            | -            |              |
| 0.5          | 1            | 0.5          |              | 0.5              |              | 0.5          |              |                                                       |            | -            |              |
| <0.5         |              | <0.5         |              | <0.5             |              | <0.5         |              |                                                       |            | <0.5         |              |
| <0.2         | 1            | <0.2         |              | <0.2             |              | <0.2         |              | <0.2                                                  |            | <0.2         | 1            |
| <05          |              | <05          |              | <05              |              | <05          |              | <05                                                   |            | <05          |              |
| <b>NO.0</b>  |              | <0.0<br>0.5  |              | <0.0<br>0.5      |              | <u> </u>     |              | <0.0<br>0.5                                           |            | <0.0<br>0.5  |              |
| <0.5         |              | <0.5         |              | <0.5             |              | <0.5         |              | <0.5                                                  |            | <0.5         |              |
| <5           |              | <5           |              | <5               |              | <5           |              |                                                       |            | <5           |              |
| 10           |              | 22           |              | ~5               |              | 0            |              | ~5                                                    |            | -5           |              |
| 13           |              | ~~~~         |              | <b>N</b>         |              | 3            |              | 1                                                     |            | <b>N</b>     |              |
| <1           |              | <1           |              | <1               |              | <1           |              | <1                                                    |            | <1           |              |
| 1            |              | <1           |              | <1               |              | <1           |              | <1                                                    |            | <1           |              |
| <0 F         |              | <0 F         |              | <0 F             |              | <0 F         |              | <0.5                                                  |            | <0 F         |              |
| <0.5<br>100  | 100          | <0.5         | 100          | <b>NO.0</b>      |              | <0.5<br>00.0 | 100          | <0.J                                                  |            | <0.J         |              |
| 102          | <100         | 207          | <100         | 11               |              | 220          | <100         | 27                                                    |            | /5           |              |
| 4.7          |              | 1.4          |              | <0.1             |              | 0.2          |              | <0.1                                                  |            | <0.1         |              |
| 6            |              | -2           |              | -2               |              | 3            |              | -2                                                    |            | -2           |              |
| 0            |              | <u>\</u>     |              | ~~               |              | 5            |              | ~2                                                    |            | ~~           | 4.0.0        |
| 46           | 200          | 24           |              | 3                |              | 25           |              | 5                                                     |            | 41           | <100         |
| <5           |              | <5           |              | <5               |              | <5           |              | <5                                                    |            | <5           |              |
| -2           |              | -2           |              | -2               |              | -2           |              | ~2                                                    |            | -2           |              |
| < <u>~</u>   |              | <2           |              | <2               |              | < <u>~</u>   |              | <2                                                    |            | <2           |              |
| -            |              | -            |              | <0.25            |              | -            |              | -                                                     |            | -            |              |
| -            |              | -            |              | < 0.25           |              | -            |              | -                                                     |            | -            |              |
|              |              |              |              | <0.25            |              |              |              |                                                       |            |              |              |
|              |              | -            |              | <0.25            |              |              |              | -                                                     |            |              |              |
| -            |              | -            |              | <0.25            |              | -            |              | -                                                     |            | -            |              |
| -            |              | -            |              | < 0.25           |              | -            |              | -                                                     |            | -            |              |
| _            |              | _            |              | <0.25            |              | _            |              | _                                                     |            | _            |              |
| -            | 1            | -            |              | ~0.20            |              | -            |              | -                                                     |            | -            |              |
| -            |              | -            |              | <0.25            |              | -            |              | -                                                     |            | -            |              |
| -            | 1            | -            |              | < 0.25           |              | -            |              | -                                                     |            | -            |              |
| -            |              | -            |              | <0.25            |              | -            |              | -                                                     |            | -            |              |
|              | 1            |              |              | -0.05            |              | 1            |              |                                                       |            |              |              |
| -            |              | -            |              | <0.25            |              | -            |              | -                                                     |            |              |              |
| -            |              | -            |              | <u>&lt;0.2</u> 5 |              | -            |              | -                                                     |            | -            |              |
| -            |              | -            |              | <0.25            |              | -            |              | -                                                     |            | -            |              |
|              |              |              |              | -0.20            |              |              |              |                                                       |            |              |              |
| -            |              | -            |              | I IC             |              |              |              |                                                       |            | -            | l            |
| -            |              | -            |              | -                |              |              |              | -                                                     |            |              |              |
| <2           |              | <2           |              | <2               |              | <2           |              | <2                                                    |            | <2           |              |
| nc           | İ            | nc           |              | nc               |              |              |              |                                                       |            |              |              |
| ПС           | <u> </u>     | ΠC           |              | 110              |              | IIC          |              | ΠŬ                                                    |            | ΠC           |              |
| -            |              | -            |              | <0.1             |              |              |              | -                                                     |            |              |              |
| < 0.5        |              | < 0.5        |              | < 0.5            |              | < 0.5        |              | < 0.5                                                 |            | < 0.5        |              |
| <0.5         | İ            | <0.5         | i            | <0.5             | i            | <05          |              | <0.5                                                  |            | <0.5         | İ            |
| <0.0         | <u> </u>     | <0.0         |              | <0.0             |              | <0.0         |              | <u.0< td=""><td></td><td>&lt;0.0</td><td></td></u.0<> |            | <0.0         |              |
| -            |              | -            |              | <5               |              | -            |              | -                                                     |            | -            |              |
|              |              | -            |              | <0.5             |              |              |              | -                                                     |            |              |              |
| -            | 1            | _            | İ            | <0.5             | İ            | -            | i            | -                                                     |            | _            | İ            |
| <u> </u>     | <u> </u>     | -            |              | <u>\0.0</u>      |              | <u> </u>     |              |                                                       |            | -            |              |
| -            |              | -            |              | <0.5             |              | -            |              | -                                                     |            | -            |              |
| -            | 1            | -            |              | < 0.5            |              | -            |              | -                                                     |            | -            |              |
|              | 1            | i .          | İ            | <0.5             | İ            | 1            | i            |                                                       |            |              | İ            |
|              |              | -            |              | <0.0             |              |              |              | -                                                     |            | -            |              |
| -            |              | -            |              | <0.5             |              | -            |              | -                                                     |            | -            |              |
|              |              | -            |              | < 0.5            |              |              |              | -                                                     |            | -            |              |
| -            |              | _            |              | <0.5             |              | -            |              | _                                                     |            | _            |              |
| -            |              | -            |              | <0.0             |              |              |              | -                                                     |            | -            |              |
| -            |              | -            |              | <0.5             |              | -            |              | -                                                     |            | -            |              |
|              |              | -            |              | <0.5             |              |              |              | -                                                     |            |              |              |
| _            | İ            | _            |              | <0.5             |              | _            |              | -                                                     |            | _            |              |
| <u> </u>     | <u> </u>     | -            |              | <u>\0.0</u>      |              | <u> </u>     |              |                                                       |            | -            |              |
| -            | 1            | -            | 1            | <0.5             | 1            |              | 1            | -                                                     |            | -            | 1            |

|                |                                   |      |      |              |              |              | B            | 010          | BO           | )15          | B            | 016          | BO           | )17          | B            | )25          | B(           | )30          |
|----------------|-----------------------------------|------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                |                                   |      |      |              |              |              | B010 0 0-0 2 | B010 0 0-0 2 | B015 0 0-0 2 | B015 0 0-0 2 | B016 0 0-0 2 | B016 0 0-0 2 | B017 0 0-0 2 | B017 0 0-0 2 | B025 0 4-0 5 | B025 0 4-0 5 | B030_0_0-0_2 | B030_0.0-0.2 |
|                |                                   |      |      |              |              |              | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        | 0.4-0.5      | 0.4-0.5      | 0-0.2        | 0-0.2        |
|                |                                   |      |      |              |              |              | B010         | B010         | B015         | B015         | B016         | B016         | B017         | B017         | B025         | B025         | B030         | B030         |
|                |                                   |      |      |              |              |              | 21/10/2013   | 21/10/2013   | 18/10/2013   | 18/10/2013   | 18/10/2013   | 18/10/2013   | 18/10/2013   | 18/10/2013   | 24/10/2013   | 24/10/2013   | 18/10/2013   | 18/10/2013   |
|                |                                   |      |      |              |              |              | SOIL         | TCLP         | SOIL         | TCLP         | SOIL         | TCLP         | SOIL         | TCLP         | SOIL         | TCLP         | SOIL         | TCLP         |
|                |                                   |      |      |              |              |              | ES1322813    | ES1322813    | ES1322746    | ES1322746    | ES1322746    | ES1322746    | ES1322746    | ES1322746    | ES1323080    | ES1323295    | ES1322746    | ES1322746    |
|                |                                   |      |      |              |              |              | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       |
|                |                                   |      |      |              |              |              |              |              |              |              |              |              |              |              |              |              |              | ,            |
|                | Chemical Name                     | SOIL | TCLP | NSW EPA 2014 | NSW EPA 2014 | NSW EPA 2014 |              |              |              |              |              |              |              |              |              |              | 1            |              |
|                |                                   | LOR  | LOR  | GSW (SCC1)   | GSW (TCL P1) | RSW (SCC2)   |              |              |              |              |              |              |              |              |              |              |              |              |
|                |                                   | LOIN | LOIN | (mg/kg)      |              | (mg/kg)      |              |              |              |              |              |              |              |              |              |              |              |              |
|                | 7011 00 00                        |      |      | (ilig/kg)    | (µg/⊏)       | (ilig/kg)    | 10           |              | 10           |              | 10           |              | 10           |              | 10           |              |              | ł            |
| TRH (NEPM      | TRH C6-C9                         | 10   | -    | 650          | -            | 2600         | <10          |              | <10          | -            | <10          |              | <10          |              | <10          |              | <10          | <u> </u>     |
| 1999)          | TRH C10-36 (Total)                | 50   |      | 10000        |              | 40000        | 870          |              | 350          | -            | 19,000       |              | <50          |              | 1520         |              | 1970         | <u> </u>     |
| PAHs           | Benzo(a) pyrene                   | 0.05 | 0.5  | 10           | 40           | 23           | <0.5         |              | <0.5         | -            | 8.1          | <0.5         | <0.5         |              | 1.1          | <0.5         | <0.5         | <u> </u>     |
| TOLD           | Sum of PAHs                       | 0.5  | 0.5  | 200          |              | 800          | <0.5         |              | <0.5         | 1.0          | 160          | 2            | <0.5         | 4.0          | 8.1          | nc           | 0.7          |              |
| I CLP for Non  | pH (Final)                        | _    | 0.1  |              |              |              |              | 5.5          |              | 4.9          |              | 5            |              | 4.9          |              | 6.3          |              | 5.7          |
| & Semivolatile | pH (Initial)                      | _    | 0.1  |              |              |              |              | 9            |              | 7.8          |              | 8.5          |              | 8            |              | 1.6          |              | 9.1          |
| Analytes       | PH (after HCL)                    | _    | 0.1  |              |              |              |              | 1.8          |              | 1.7          |              | 1.8          |              | 1.7          |              | 1            |              | 4.4          |
| Dhanala        | 2 methylahanal                    | 0.5  |      | 7000         | 200          | 20000        | -0 F         |              | -0 F         | 1            | -0 F         | 1            | -0 F         | 1            | -0 F         | 4.9          | -0 F         | <u>├</u>     |
| Prienois       | 2-methylphenol                    | 0.5  | + +  | 7200         | 200          | 2000         | <0.5         |              | <0.5         |              | <0.5         | -            | <0.5         |              | <0.5         |              | <0.5         | ł            |
| CAHe           | Tetrachloroothono                 | 0.5  | +    | 518<br>2F 2  | 14.4         | 2073         | <0.5         |              | <0.5         | <u> </u>     | <0.5         | <u> </u>     | <0.5         |              | 1            |              | <0.5         | ł            |
| CARS           | Trichloroothono                   | 0.5  | +    | 20.2         | 0.7          | 70           | -            |              | -            | <u> </u>     | <0.5         | <u> </u>     | -            |              | 1            |              |              | ł            |
|                | Vinyl chloride                    | 0.5  |      | 7.2          | 0.0          | 29.9         | -            | 1            | -            |              | <0.5         |              | -            |              | 1            |              | + <u> </u>   | t            |
| BTEY           |                                   | 0.5  |      | 1800         | 50           | 20.0         |              | 1            | -05          |              | ~0.5         |              | -05          |              |              |              | -0.5         | <u> </u>     |
|                |                                   | 0.0  |      | 18           | 0.5          | 7200         | <0.0<br>20.0 | 1            | <0.3         |              | <0.0         |              | <0.3         |              | <0.2         |              | <0.0<br>20.2 | t            |
|                | Ethylbenzene                      | 0.2  |      | 1080         | 30           | /320         | <0.2         |              | <0.2         |              | <0.2         |              | <0.2         |              | <0.2         |              | <0.2         |              |
|                | Toluene                           | 0.5  |      | 518          | 1.4          | 2073         | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              |
| Metals         | Antimony                          | 5    |      | 510          | 1.4          | 2013         | <0.0         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <5           | <u> </u>     |
| INICIAIS       |                                   | 4    |      | 500          | 5            | 2000         | 19           | -            | 22           |              | <5           |              | 9            |              | ~5           |              | <5           | <u> </u>     |
|                | Bervilium                         | 1    |      | 100          | 1            | 400          | <1           |              | <1           |              | <1           |              | <1           |              | <1           |              | <1           |              |
|                | Cadmium                           | 0.4  |      | 100          | 1            | 400          | 1            |              | <1           |              | <1           |              | <1           |              | <1           |              | <1           |              |
|                | Chromium (hexavalent)             | 0.5  |      | 1900         | 5            | 7600         | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              |
|                | Lead                              | 1    | 100  | 1500         | 5000         | 6000         | 102          | <100         | 207          | <100         | 11           |              | 220          | <100         | 27           |              | 75           |              |
|                | Mercury                           | 0.1  |      | 50           | 0.2          | 200          | 4.7          | 1100         | 1.4          | 1100         | <0.1         |              | 0.2          | 1100         | <0.1         |              | <0.1         |              |
|                | Molvbdenum                        | 1    |      | 1000         | 5            | 4000         | 6            |              | <2           |              | <2           |              | 3            |              | <2           |              | <2           |              |
|                | Nickel                            | 1    | 100  | 1050         | 2000         | 4200         | 46           | 200          | 24           |              | 3            |              | 25           |              | 5            |              | 41           | <100         |
|                | Selenium                          | 2    |      | 50           | 1            | 200          | <5           |              | <5           |              | <5           |              | <5           |              | <5           |              | <5           |              |
|                | Silver                            | 1    |      | 180          | 5            | 720          | <2           |              | <2           |              | <2           |              | <2           |              | <2           |              | <2           |              |
| OCPs           | a-BHC                             | 0.05 |      |              |              |              | -            |              | -            |              | < 0.25       |              | -            |              | -            |              | -            |              |
|                | Aldrin                            | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
|                | b-BHC                             | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
|                | chlordane                         | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
|                | d-BHC                             | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
|                | DDT+DDE+DDD                       | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
|                | Dieldrin                          | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
|                | Endrin                            | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
|                | Endrin aldehyde                   | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              | -            |              |
| 1              | g-BHC (Lindane)                   | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              |              | l            |
|                | Heptachlor                        | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              |              |              |              | l            |
|                | Heptachlor epoxide                | 0.05 |      |              |              |              | -            |              | -            |              | <0.25        |              | -            |              | -            |              |              | <b> </b>     |
| 0.00           | Sum Scheduled Chemicals           | -    |      | <50          |              |              | -            |              |              |              | nc           | ļ            | -            |              | -            |              |              | <b> </b>     |
| UPPs           | Chlorpyrifos                      | 0.05 | +    | 7.5          | 0.2          | 30           | -            | +            | -            | <b> </b>     | -            | <b> </b>     | -            |              | -            |              | <u>-</u>     | ł            |
| SVOC           | Pentachlorophenol                 | 2    | +    | 070          |              |              | <2           |              | <2           |              | <2           |              | <2           |              | <2           |              | <2           | ł            |
| DOD            | Sum Moderately Harmful Pesticides | -    | +    | 250          | N1/A         | 50           | nc           |              | nc           | 1            | nc           | 1            | nc           |              | nc           |              | nc           | <u> </u>     |
| PCBs           | PCBs (Sum of total)               | 0.1  |      | 50           | N/A          | 50           | -            |              | -            |              | <0.1         |              | -            |              | -            |              | -            |              |
| SVOCs          | 2,4,5-trichlorophenol             | 0.5  |      | 14400        | 400          | 57600        | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              |
| 1              | Z,4,0-tricniorophenoi             | 0.5  | + -  | 72           | 2            | 288          | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         |              | <0.5         | <u> </u>     |
| V/00-          | Methyl Ethyl Ketone               | 5    |      | 7200         | 200          | 28800        | -            |              | -            |              | <5           |              | -            |              | -            |              |              |              |
| VUUS           | 1,1,1,∠-tetracnioroetnane         | 0.5  |      | 360          | 10           | 1440         | -            |              | -            | <u> </u>     | <0.5         | <u> </u>     | -            |              | -            |              |              | ł            |
|                |                                   | 0.5  |      | 1080         | 30           | 4320         |              |              |              |              | <0.5         |              | -            |              | -            |              |              | <u> </u>     |
|                | 1,1,2,2-letrachioroethane         | 0.5  | +    | 40.8         | 1.3          | 10/.2        | -            |              | -            | <u> </u>     | <0.5         | <u> </u>     | -            |              | -            |              |              | ł            |
|                | 1,1,2-unchioroeunane              | 0.5  | +    | 43.2         | 30           | 1/2.8        | -            |              | -            |              | <0.5         |              | -            |              |              |              | <u> </u>     | <u> </u>     |
|                | 1, 1-uichloroethene               | 0.5  | +    | 25           | 0.7          | 100          | -            |              | -            | <u> </u>     | <0.5         | <u> </u>     | -            |              | -            |              |              | ł            |
| 1              | 1.2-dichloroethane                | 0.5  |      | 100          | 1.0          | 72           | -            |              | -            | 1            | <0.5         | 1            | -            |              | -            | 1            | <u>-</u>     | t            |
|                | 1 4-dichlorobenzene               | 0.5  |      | 270          | 7.5          | 1080         | -            |              |              |              | <0.5         |              | -            |              |              |              | <u> </u>     | <u> </u>     |
|                | Carbon tetrachloride              | 0.5  |      | 18           | 0.5          | 72           | -            |              |              |              | <0.5         |              | -            |              |              |              | <u> </u>     | <u> </u>     |
| 1              | Chlorobenzene                     | 0.5  |      | 3600         | 100          | 14400        | -            | 1            | -            |              | <0.5<br>~0.5 |              | -            |              |              |              | <u> </u>     | t            |
|                | Chloroform                        | 0.5  |      | 216          | 6            | 864          |              |              |              |              | <0.5         |              |              |              |              |              | <u> </u>     | <u> </u>     |
|                | Styrene                           | 0.5  |      | 108          | 3            | 432          | -            | 1            | -            | 1            | <0.5         | 1            | -            |              | -            |              | <u> </u>     | <u> </u>     |
| 1              | orgiono                           | 0.0  | 1    | 100          | J            | 402          | -            |              |              | 1            | ~0.0         | 1            | -            |              | -            | I            |              | 1            |

Notes: NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelines* TRH = Total Recoverable Hydrocarbons

TCLP = Toxicity Characteristic Leaching Procedure

GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram

 $\mu g/L = micrograms per litre$  $<u>PERCENT_WW</u> = percentage weight per weight$ 

Shading denotes exceedence of NSW 2008 General Solid Waste - Specific Contaminant Concentration 1 Shading denotes exceedence of NSW 2008 General Solid Waste - Toxicity Characteristics Leaching Procedure 1 Shading denotes exceedence of NSW 2008 Restricted Solid Waste - Specific Contaminant Concentration 2 Shading denotes exceedence of NSW 2008 Restricted Solid Waste - Toxicity Characteristics Leaching Procedure 2

| CO           | 03           | CC           | 05           |         |
|--------------|--------------|--------------|--------------|---------|
| C003_0.4-0.5 | C003_0.4-0.5 | C005_0.0-0.2 | C005_0.0-0.2 | C007_0. |
| 0.4-0.5      | 0.4-0.5      | 0-0.2        | 0-0.2        | 0-0.2   |
| C003         | C003         | C005         | C005         | C00     |
| 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2 |
| SOIL         | TCLP         | SOIL         | TCLP         | SOIL    |
| ES1323052    | ES1323325    | ES1323052    | ES1323325    |         |
| Normal       | Normal       | Normal       | Normal       | Norm    |

|              |                                     |      |      |              |              |              | CL           | 003          | CO           | 05           | CL           | 07           |
|--------------|-------------------------------------|------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|              |                                     |      |      |              |              |              | C003_0.4-0.5 | C003_0.4-0.5 | C005_0.0-0.2 | C005_0.0-0.2 | C007_0.0-0.2 | C007_0.0-0.2 |
|              |                                     |      |      |              |              |              | 0 4-0 5      | 0 4-0 5      | 0-0.2        | 0-0.2        | 0-0.2        | 0-0.2        |
|              |                                     |      |      |              |              |              | C003         | C003         | C005         | C005         | C005         | C005         |
|              |                                     |      |      |              |              |              | 0003         | 0003         | 0000         | 0005         | 0000         | 0000         |
|              |                                     |      |      |              |              |              | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   | 22/10/2013   |
|              |                                     |      |      |              |              |              | SOIL         | TCLP         | SOIL         | TCLP         | SOIL         | TCLP         |
|              |                                     |      |      |              |              |              | ES1323052    | ES1323325    | ES1323052    | ES1323325    |              |              |
|              |                                     |      |      |              |              |              | Normal       | Normal       | Normal       | Normal       | Normal       | Normal       |
|              |                                     |      |      |              |              |              | nonnai       | Normai       | Normai       | Normai       | Normai       | Normai       |
|              |                                     |      |      |              |              |              |              |              |              |              |              |              |
|              | Chemical Name                       | SOIL | TCLP | NSW EPA 2014 | NSW EPA 2014 | NSW EPA 2014 |              |              |              |              |              |              |
|              |                                     | LOR  | LOR  | GSW (SCC1)   | GSW (TCL P1) | RSW (SCC2)   |              |              |              |              |              |              |
|              |                                     | 2011 | 2010 | (===(!==)    |              | (            |              |              |              |              |              |              |
|              |                                     |      |      | (mg/kg)      | (µg/L)       | (mg/kg)      |              |              |              |              |              |              |
| RH (NEPM     | TRH C6-C9                           | 10   |      | 650          |              | 2600         | <10          |              | <10          |              | <10          |              |
|              | TDU C10.26 (Total)                  | 50   |      | 10000        |              | 40000        | 20,400       |              | 2000         |              | 0170         |              |
| 999)         | TRH C10-36 (Total)                  | 50   |      | 10000        |              | 40000        | 20,400       |              | 3900         |              | 9170         |              |
| PAHs         | Benzo(a) pyrene                     | 0.05 | 0.5  | 10           | 40           | 23           | <0.5         |              | <0.5         |              | <0.5         |              |
|              | Sum of PAHs                         | 0.5  | 0.5  | 200          |              | 800          | <0.5         |              | <0.5         |              | nc           |              |
| CLP for Non  | pH (Final)                          |      | 0.1  |              |              |              |              | 10           |              | 10           |              | 73           |
|              |                                     |      | 0.1  |              |              |              |              | 4.9          |              | 4.9          |              | 1.5          |
| Semivolatile | ph (Initial)                        |      | 0.1  |              |              |              |              | 7.5          |              | 1.1          |              | 1.6          |
| Analytes     | pH (after HCL)                      |      | 0.1  |              |              |              |              | 1.6          |              | 1.6          |              | 1            |
|              | TCI P Fluid                         |      | 1    |              |              |              |              | 1            |              | 1            |              | 49           |
| bonole       | 2 mothylphonol                      | 05   |      | 7200         | 200          | 28800        | -0 F         |              | -0 E         |              | -0 F         |              |
| nenois       | z-meunyiphenoi                      | 0.5  |      | 7200         | 200          | 28800        | <0.5         |              | <0.5         |              | <0.5         |              |
|              | Phenol                              | 0.5  |      | 518          | 14.4         | 2073         | <0.5         |              | <0.5         |              | <0.5         |              |
| CAHs         | Tetrachloroethene                   | 0.5  |      | 25.2         | 0.7          | 100.8        | -            |              | -            |              | -            |              |
| -            | Trichloroethene                     | 0.5  |      | 18           | 0.5          | 72           | _            |              | -            |              | -            |              |
|              |                                     | 0.0  |      | 7.0          | 0.0          | 12           |              | 1            | -            |              | -            |              |
|              | vinyi chioriae                      | 5    |      | 7.2          | 0.2          | 28.8         | -            |              | -            |              | -            |              |
| BTEX         | Total Xylene (ESDAT)                | 0.5  |      | 1800         | 50           | 7200         | <0.5         |              | <0.5         |              | <0.5         |              |
|              | Benzene                             | 0.2  |      | 19           | 0.5          | 72           | <0.2         |              | <0.2         |              | <0.2         |              |
|              | Delizene                            | 0.2  |      | 10           | 0.5          | 12           | <0.2         |              | <0.Z         |              | <0.2         |              |
|              | Ethylbenzene                        | 0.5  |      | 1080         | 30           | 4320         | <0.5         |              | <0.5         |              | <0.5         |              |
|              | Toluene                             | 0.5  |      | 518          | 1.4          | 2073         | <0.5         |              | < 0.5        |              | < 0.5        |              |
| lotale       | Antimony                            | 5    |      |              |              |              | -5           |              | 9            |              | 0            |              |
| liciais      | Anumony                             |      |      | =            |              |              | <5           |              | 0            |              | 0            |              |
|              | Arsenic                             | 4    |      | 500          | 5            | 2000         | <5           |              | <5           |              | <5           |              |
|              | Beryllium                           | 1    |      | 100          | 1            | 400          | <1           |              | <1           |              | <1           |              |
|              | Cadmium                             | 04   |      | 100          | 1            | 400          | د1           |              | <1           |              | <1           |              |
|              | Observations (house start)          | 0.4  |      | 1000         |              | 7000         |              |              | 0.5          |              | 0.5          |              |
|              | Chromium (nexavalent)               | 0.5  |      | 1900         | 5            | 7600         | <2.5         |              | <0.5         |              | <0.5         |              |
|              | Lead                                | 1    | 100  | 1500         | 5000         | 6000         | <5           | <100         | 184          | <100         | 102          | <100         |
|              | Mercury                             | 0.1  |      | 50           | 0.2          | 200          | <0.1         |              | <0.1         |              | <0.1         |              |
|              | Molybdonum                          | 1    |      | 1000         | 5            | 4000         | -2           |              | 2            |              | 17           |              |
|              |                                     |      | 100  | 1000         | J            | 4000         | < <u>~</u>   |              |              |              |              |              |
|              | Nickel                              | 1    | 100  | 1050         | 2000         | 4200         | <2           |              | 14           |              | 8            |              |
|              | Selenium                            | 2    |      | 50           | 1            | 200          | <5           |              | <5           |              | <5           |              |
|              | Silver                              | 1    |      | 180          | 5            | 720          | -2           |              | -2           |              | -2           |              |
|              |                                     | 0.05 |      | 100          | 0            | 120          | ~~           |              | 12           |              | 12           |              |
| JCPS         |                                     | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | Aldrin                              | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | b-BHC                               | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | chlordane                           | 0.05 |      |              |              |              | _            |              | _            |              | _            |              |
|              |                                     | 0.05 |      |              |              |              | -            |              | _            |              | -            |              |
|              | а-внс                               | 0.05 |      |              |              |              |              |              | -            |              | -            |              |
|              | DDT+DDE+DDD                         | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | Dieldrin                            | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | Endrin                              | 0.05 |      |              |              |              |              |              |              |              |              |              |
|              |                                     | 0.05 |      |              |              |              |              |              | -            |              | -            |              |
|              | Endrin aldehyde                     | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | g-BHC (Lindane)                     | 0.05 |      |              |              |              |              |              | -            |              | -            |              |
|              | Hentachlor                          | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | Hentachler energide                 | 0.05 |      |              |              |              | 1            | 1            |              |              |              |              |
|              | Heptachior epoxide                  | 0.05 |      |              |              |              | -            |              | -            |              | -            |              |
|              | Sum Scheduled Chemicals             | -    |      | <50          |              |              | -            |              | -            |              | -            |              |
| OPPs         | Chlorpyrifos                        | 0.05 |      | 7.5          | 0.2          | 30           | -            |              | -            |              | -            |              |
| SVOC         | Pentachlorophenol                   | 2    |      |              |              |              | -2           |              | -2           |              | -2           |              |
|              | Ours Madamatalu Harraful Dastiaidaa |      |      | 050          |              |              | ~2           |              | <b>N</b> L   |              | ~2           |              |
|              | Sum Moderately Harmful Pesticides   | -    |      | 250          |              |              | nc           |              | nc           |              | nc           |              |
| PCBs         | PCBs (Sum of total)                 | 0.1  |      | 50           | N/A          | 50           | -            |              | -            |              | -            |              |
| SVOCs        | 2.4.5-trichlorophenol               | 0.5  |      | 14400        | 400          | 57600        | < 0.5        |              | <0.5         |              | < 0.5        |              |
|              | 2.4.6-trichlorophenol               | 0.5  |      | 70           | 2            | 266          | <0.5         | 1            | -0.5         |              | -0.5         | ·            |
|              |                                     | 0.5  |      | 12           | 2            | 200          | <0.5         |              | <0.5         |              | <0.5         |              |
|              | Methyl Ethyl Ketone                 | 5    |      | 7200         | 200          | 28800        | -            |              | -            |              | -            |              |
| /OCs         | 1,1,1,2-tetrachloroethane           | 0.5  |      | 360          | 10           | 1440         |              |              |              |              | -            |              |
|              | 1 1 1-trichloroethane               | 0.5  |      | 1080         | 30           | 4320         | · .          |              |              |              | -            |              |
|              |                                     | 0.0  |      | 46.0         | 1.0          | 407.0        | -            |              | -            |              | -            |              |
|              | 1,1,2,2-tetrachioroethane           | 0.5  |      | 46.8         | 1.3          | 187.2        | -            |              | -            |              | -            |              |
|              | 1,1,2-trichloroethane               | 0.5  |      | 43.2         | 30           | 172.8        | -            |              | -            |              | -            |              |
|              | 1 1-dichloroethene                  | 0.5  |      | 25           | 0.7          | 100          | -            |              | -            |              | -            |              |
|              | 1.0 diablarahanzana                 | 0.0  |      | 155          | 7.5          | 600          | -            |              | -            |              | -            |              |
|              | 1,2-aichlorobenzene                 | 0.5  |      | 155          | 7.5          | 620          | -            |              | -            |              | -            |              |
|              | 1,2-dichloroethane                  | 0.5  |      | 18           | 0.5          | 72           | -            |              | -            |              | -            |              |
|              | 1 4-dichlorobenzene                 | 0.5  |      | 270          | 7.5          | 1080         | -            |              | -            |              | -            |              |
|              | Carbon totrachlarida                | 0.0  |      | 10           | 0.5          | 70           |              |              |              |              |              |              |
|              |                                     | 0.5  |      | 18           | 0.5          | 12           | -            |              | -            |              | -            |              |
|              | Chlorobenzene                       | 0.5  |      | 3600         | 100          | 14400        | -            |              | -            |              | -            |              |
|              | Chloroform                          | 0.5  |      | 216          | 6            | 864          | -            |              | -            |              | -            |              |
|              | Styrene                             | 0.5  |      | 109          | 2            | 133          | 1            | 1            |              |              |              |              |
|              | Olyrene                             | 0.0  |      | 100          | 3            | 432          | -            |              | -            |              | -            |              |

Notes: NSW DECCW (2008 and 2009) - New South Wales Department of Climate Change and Water *Waste Classification Guidelines* TRH = Total Recoverable Hydrocarbons TCLP = Toxicity Characteristic Leaching Procedure

GSW = General Solid Waste

RSW = Restricted Solid Waste

mg/kg = milligrams per kilogram

μg/L = micrograms per litre <u>PERCENT\_WW</u> = percentage weight per weight

Shading denotes exceedence of NSW 2008 General Solid Waste - Specific Contaminant Concentration 1 Shading denotes exceedence of NSW 2008 General Solid Waste - Toxicity Characteristics Leaching Procedure 1 Shading denotes exceedence of NSW 2008 Restricted Solid Waste - Specific Contaminant Concentration 2 Shading denotes exceedence of NSW 2008 Restricted Solid Waste - Toxicity Characteristics Leaching Procedure 2

# Table T3 Asbestos in Soil Analytical Results

|        |              |                                     |                                              |                                     |                 | Asbestos in Soil Ana                             | lysis Results                                   |
|--------|--------------|-------------------------------------|----------------------------------------------|-------------------------------------|-----------------|--------------------------------------------------|-------------------------------------------------|
| Area   | Field_ID     | Sample<br>Depth<br>Range<br>(m bgs) | Approximate<br>Sample<br>Volume<br>Collected | Sample<br>Weight<br>Analysed<br>(g) | Sampled<br>Date | Absence/Presence<br>Asbestos Type if<br>Detected | Concentration of<br>asbestos in Soil<br>(% w/w) |
|        | A001_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | A001 0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 23/10/2013      | No asbestos detected                             | NA                                              |
|        | A002 0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | A002 0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 23/10/2013      | No aspestos detected                             | NA                                              |
|        | A003_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No aspestos detected                             | NA                                              |
|        | A003 0 4-0 5 | 0.0 0.2                             | 1 x 500ml                                    | NA                                  | 23/10/2013      | No aspestos detected                             | NA                                              |
|        | A004 0 0-0 2 | 0.0-0.2                             | 1 x 500ml                                    | ΝΔ                                  | 21/10/2013      | No aspestos detected                             | ΝA                                              |
|        | A004_0.4-0.5 | 0.0 0.2                             | 1 x 500ml                                    | ΝΔ                                  | 23/10/2013      | No aspestos detected                             | ΝA                                              |
|        | A005_0.0-0.2 | 0.4-0.3                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No aspestos detected                             | NA                                              |
|        | A005_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    |                                     | 21/10/2013      | No asbestos detected                             |                                                 |
|        | A005_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | 046                                 | 23/10/2013      | Amosita ashastas datastad                        | 0.022                                           |
|        | A006_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 940<br>NA                           | 19/10/2013      | No ashostos detected                             | 0.023<br>NA                                     |
|        | A007_0.4-0.3 | 0.4-0.3                             | 1 x 500ml                                    | 012                                 | 23/10/2013      | Amosite ashestes detected                        | 0.002                                           |
|        | A007_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 912                                 | 19/10/2013      | Amosite aspestos detected                        | 0.002                                           |
|        | A007_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    |                                     | 23/10/2013      | No aspestos detected                             | NA<br>NA                                        |
|        | A008_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    |                                     | 19/10/2013      | No aspestos detected                             | NA<br>NA                                        |
|        | A006_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 23/10/2013      | Amonite appendix detected                        | NA 0.022                                        |
|        | A009_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 803                                 | 19/10/2013      | Amosile aspestos detected                        | 0.023                                           |
| Area A | A010_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    |                                     | 19/10/2013      | No aspestos detected                             | NA<br>NA                                        |
|        | A011_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA<br>NA                            | 19/10/2013      | No asbestos detected                             | INA<br>NA                                       |
|        | AUTI_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA<br>NA                            | 23/10/2013      | No asbestos detected                             | NA                                              |
|        | A012_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 19/10/2013      | No asbestos detected                             | NA                                              |
|        | A012_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 23/10/2013      | No asbestos detected                             | NA                                              |
|        | A013_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 19/10/2013      | No asbestos detected                             | NA                                              |
|        | A013_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 23/10/2013      | No asbestos detected                             | NA                                              |
|        | A014_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 988                                 | 19/10/2013      | Amosite asbestos detected                        | 0.01                                            |
|        | A014_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | 1220                                | 21/10/2013      | Amosite asbestos detected                        | 0.0011                                          |
|        | A015_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 19/10/2013      | No asbestos detected                             | NA                                              |
|        | A015_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | A016_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 924                                 | 19/10/2013      | Amosite asbestos detected                        | 0.12                                            |
|        | A016_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | A017_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 958                                 | 19/10/2013      | Amosite asbestos detected                        | 0.004                                           |
|        | A017_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | A018_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 946                                 | 19/10/2013      | Amosite asbestos detected                        | 0.0007                                          |
|        | A018_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | A019_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 948                                 | 19/10/2013      | Amosite asbestos detected                        | 0.004                                           |
|        | A019_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | B001_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 562                                 | 21/10/2013      | Amosite asbestos detected                        | 0.0008                                          |
|        | B001_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 23/10/2013      | No asbestos detected                             | NA                                              |
|        | B002_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | B003_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | B003_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA 046                              | 23/10/2013      | No aspestos detected                             | NA<br>0.75                                      |
|        | B004_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 940                                 | 21/10/2013      | Amosite aspestos detected                        | 0.75                                            |
|        | B006_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 900                                 | 21/10/2013      | Amosite aspestos detected                        | 0.018                                           |
|        | B006_0.4-0.5 | 0.0 0.2                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No aspestos detected                             | NA                                              |
|        | B007_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 1221                                | 21/10/2013      | Amosite asbestos detected                        | 0.04                                            |
|        | B008 0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 1119                                | 21/10/2013      | Amosite asbestos detected                        | 0.0005                                          |
| Area B | B008_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B009_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | B010_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | Amosite asbestos detected                        | 0.005                                           |
|        | B010_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B011_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | B012_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 21/10/2013      | No asbestos detected                             | NA                                              |
|        | B012_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
| ļ      | B013_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 1285                                | 21/10/2013      | Amosite asbestos detected                        | 0.005                                           |
|        | B014_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 1094                                | 18/10/2013      | Amosite asbestos detected                        | 0.0008                                          |
|        | B014_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
| I      | В015_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 872                                 | 18/10/2013      | Amosite asbestos detected                        | 0.0008                                          |

# Table T3 Asbestos in Soil Analytical Results

|        |              |                                     |                                              |                                     |                 | Asbestos in Soil Ana                             | lysis Results                                   |
|--------|--------------|-------------------------------------|----------------------------------------------|-------------------------------------|-----------------|--------------------------------------------------|-------------------------------------------------|
| Area   | Field_ID     | Sample<br>Depth<br>Range<br>(m bgs) | Approximate<br>Sample<br>Volume<br>Collected | Sample<br>Weight<br>Analysed<br>(g) | Sampled<br>Date | Absence/Presence<br>Asbestos Type if<br>Detected | Concentration of<br>asbestos in Soil<br>(% w/w) |
|        | B016_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 857                                 | 18/10/2013      | Amosite asbestos detected                        | 0.0035                                          |
|        | B016_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | 936                                 | 24/10/2013      | Chrysotile and Amosite<br>asbestos detected      | 0.044                                           |
|        | B017_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B018_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B018_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B019_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B020_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B021_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B021_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B022_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B023_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
| Area B | B023_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B024_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B025_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B025_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B026_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B026_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B027_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B027_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B028_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B029_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | B029_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 24/10/2013      | No asbestos detected                             | NA                                              |
|        | B030_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 18/10/2013      | No asbestos detected                             | NA                                              |
|        | C003_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C003_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C003_0.9-1.0 | 0.9-1.0                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C004_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | 1092                                | 22/10/2013      | Amosite asbestos detected                        | 0.008                                           |
|        | C004_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C004_0.9-1.0 | 0.9-1.0                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C005_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C005_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C005_0.8-0.9 | 0.8-0.9                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C006_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C006_0.9-1.0 | 0.9-1.0                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
| Area C | C006_1.2-1.3 | 1.2-1.3                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
| /      | C007_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C007_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C007_0.7-0.8 | 0.7-0.8                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C008_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C008_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C008_0.9-1.0 | 0.9-1.0                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C009_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C009_0.9-1.0 | 0.9-1.0                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C009_1.9-2.0 | 1.9-2.0                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C010_0.0-0.2 | 0.0-0.2                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C010_0.4-0.5 | 0.4-0.5                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |
|        | C010_0.9-1.0 | 0.9-1.0                             | 1 x 500ml                                    | NA                                  | 22/10/2013      | No asbestos detected                             | NA                                              |

# Notes:

% w/w = percentage weight per weight

ml = millilitres

m bgs = metres below ground surface

Shading indicates % w/w of asbestos detected is greater than NEPM (2013) criteria for fibrous asbestos (FA) and asbestos fibres (AF) at sites for all proposed uses 0.001% w/w

Kurnell Asbestos Contaminated Soils Management Project Pipeways Asbestos Contaminated Soils Waste Classification Report Commercial-in-Confidence

# Appendix C

# 2016 Results Tables

|                  |           |            |           |                                                                   |                                                                            |          |          |       | Anal     | vtical Suite |                  |       |
|------------------|-----------|------------|-----------|-------------------------------------------------------------------|----------------------------------------------------------------------------|----------|----------|-------|----------|--------------|------------------|-------|
| Primary ID       | Duplicate | Triplicate | PID (ppm) | Sample Description                                                | Rationale                                                                  |          |          |       |          | Asbestos     | Asbestos         |       |
|                  |           |            |           |                                                                   |                                                                            | Metals   | TPH      | BTEXN | B(a)P    | (presence)   | (quantification) | TCLP  |
| Area A           |           |            |           |                                                                   |                                                                            |          |          |       |          |              |                  |       |
| A003 5 0 0-0 2   | -         | -          | 13        | Silty SAND (Fill), dark brown, slightly moist, loose, fine-medium | Location between A003 and A004 to confirm historical results               | 1        | 1        | 1     | 1        | 1            | -                | 1     |
| 100000_010 012   |           |            |           | grained.                                                          | of no asbestos                                                             |          |          |       |          | •            |                  |       |
|                  |           |            |           |                                                                   | Location between A005 and A006. Asbestos was found at                      |          |          |       |          |              |                  |       |
|                  |           |            |           |                                                                   | location A006 but not at A005. This sample should confirm                  |          |          |       |          |              |                  |       |
| A005.5_0.0-0.2   | -         | QC155      | 0.3       | Silty SAND (Fill), brown, dry, loose, fine-medium grained.        | delineation of asbestos and TCLP analysed to determine                     | 1        | 1        | 1     | 1        | 1            | -                | 1     |
|                  |           |            |           |                                                                   | whether historical results at A006 (hazardous waste) may                   |          |          |       |          |              |                  |       |
|                  |           |            |           |                                                                   | receive a lower classification                                             |          |          |       |          |              |                  |       |
|                  |           |            |           | Silty SAND (Fill), dark brown, slightly moist, loose, fine-medium | Location between A006 and A007 sampled for confirmation of                 |          |          |       |          |              |                  |       |
| A006.5_0.0-0.2   | -         | -          | 3.3       | grained.                                                          | asbestos presence and TCLP to potentially reduce historical                | 1        | 1        | 1     | 1        | 1            | 1                | 1     |
|                  |           |            |           | 3                                                                 | classification                                                             |          |          |       |          |              |                  |       |
|                  |           |            |           | Silty SAND (Fill), dark brown, slightly moist, loose, fine-medium | Location between A007 and A008 sampled for confirmation of                 |          |          |       |          |              |                  |       |
| A007.5_0.0-0.2   | -         | -          | 2.2       | grained, tace gravels.                                            | asbestos presence and TCLP to potentially reduce historical                | 1        | 1        | 1     | 1        | 1            | -                | -     |
|                  |           |            |           | g                                                                 | classification                                                             |          |          |       |          |              |                  |       |
|                  |           |            |           | Silty SAND (Fill), dark brown, slightly moist, loose, fine-medium | Location between A008 and A009 sampled for confirmation of                 |          |          |       |          |              |                  |       |
| A008.5_0.0-0.2   | -         | -          | 16.6      | grained, tace gravels.                                            | asbestos presence and TCLP to potentially reduce historical                | 1        | 1        | 1     | 1        | 1            | -                | -     |
|                  |           |            |           | 3 ***** 3 ****                                                    | classification                                                             |          |          |       |          |              |                  |       |
|                  |           |            |           |                                                                   | Location between A009 and A010 sampled to confirm                          |          |          |       |          |              |                  |       |
| A009.5_0.0-0.2   | -         | -          | -         | No sample collected due to concrete slab.                         | delineation of asbestos (A010 has no asbestos) and TCLP to                 | -        | -        | -     | -        | -            | -                | -     |
|                  |           |            |           |                                                                   | potentially reduce historical classification                               |          |          |       |          |              |                  |       |
| A013.5 0.0-0.2   | QC157     | -          | 2         | Silty SAND (Fill), dark brown to black, slightly moist to moist,  | Sampled between A013 and A014 to delineate asbestos (found                 | 1        | 1        | 1     | 1        | 1            | 1                | -     |
| 101010_010 012   | 20101     |            | -         | loose to medium dense, minor clay.                                | in A014 and not A013)                                                      |          |          |       |          | · ·          |                  |       |
| A013.5 0.4-0.5   | -         | -          | 63.8      | Silty SAND (Fill), dark brown to black, wet, loose to medium      | Sampled to confirm delineation of asbestos at depth form A014              | 1        | 1        | 1     | 1        | 1            | 1                | -     |
|                  |           |            |           | dense, minor clay.                                                |                                                                            |          | -        | -     |          | -            |                  |       |
| A014.5 0.4-0.5   | -         | QC158      | 47.8      | Silty SAND (Fill), dark brown, loose, wet, fine to medium         | Sampled between A014 and A015 to delineate asbestos at                     | 1        | 1        | 1     | 1        | 1            | 1                | -     |
|                  |           | 40100      |           | grained.                                                          | depth historically found at A014                                           | · ·      | · ·      |       |          | · ·          |                  |       |
| Area B           | r         | r          |           |                                                                   |                                                                            |          | 1        | 1     | 1        |              | 1                |       |
| D004 0 0 0 0     |           |            | 4.0       | Silty SAND (Fill), dark brown, dry, loose, fine-medium grained,   | Sampled to confirm historical results and TCLP to potentially              |          |          |       |          | 4            | 4                | -     |
| B001_0.0-0.2     | -         | -          | 4.0       | Inicusions of organic matter and paint chips.                     | IOWER classification if possible                                           | 1        | 1        | 1     | 1        | 1            | 1                |       |
|                  |           |            |           | Sitty SAND (Fill), dark brown, dry, loose, line-medium grained,   | Sampled between BUU3 and BUU4 to delineate aspestos located                |          |          |       |          | 4            | 4                | -     |
| B003.5_0.0-0.2   | -         | -          | Z.Z       | Rinor clay, inicusions of organic matter and paint chips.         | at B004                                                                    | 1        | 1        | 1     | 1        | 1            | 1                |       |
| B007 5 0 0 0 0   |           |            | 10        | Sitty SAND (Fill), dark brown, dry, loose, line-medium grained,   | Sampled between BUU7 and BUU8 to delineate aspestos in                     | 4        | 4        | 4     | 4        | 4            | 1                | -     |
| D007.5_0.0-0.2   | -         | -          | 1.0       | site SAND (Fill) dork brown dry loose, fine medium grained        | DUU/                                                                       | 1        |          |       | - 1      | 1            | 1                |       |
| B000 5 0 0 0 2   |           |            | 26        | Sitty SAND (Fill), dark brown, dry, toose, line-medium graned,    |                                                                            | 1        | 1        | 1     | 1        | 1            | 1                | -     |
| B009.5_0.0-0.2   | -         | -          | 3.0       | Lace clay, inicusions of organic matter and paint chips.          | DUTU<br>Compled in courthern partian of site to confirm historical results |          | - 1      |       | 1        | 1            | I                |       |
| P0105 0002       | 00150     |            | 26        | modium placticity, inclusions of organic matter                   | sampled in southern portion of site to commit historical results           | 1        | 1        | 1     | 1        | 1            | 1                | 1     |
| B010.3_0.0-0.2   | QC 150    | -          | 3.0       | Silby SAND (Fill), dark brown, dry loose, fine medium grained     | Sompled Potween P012 and P012 to delineate achestes                        |          |          | 1     | 1        | - 1          | 1                |       |
| B0125 0 0-0 2    | _         | _          | 15        | trace day, intersions of organic matter                           | processo in P012                                                           | 1        | 1        | 1     | 1        | 1            | -                | 1     |
| D012.3_0.0-0.2   | -         | -          | 4.5       | Silty SAND (Fill) dark brown wet loose, fine medium grained       | Sampled between P014 and A012 to delineate ashestes at                     | · ·      |          | 1     |          |              |                  |       |
| BH014 0 0-0 2    | _         | _          | 22.2      | Sitty SAND (Fill), dark brown, wet, loose, "ine-medium grained.   | B014                                                                       | 1        | 1        | 1     | 1        | 1            | -                | 1     |
| DI1014_0.0-0.2   | _         | -          | 22.2      | Silty SAND (Fill) dark brown wet loose, fine-medium grained       | Sampled to confirm historical concentration. TCLP to                       |          |          |       |          | 1            |                  | 1     |
| BH014 0 5-0 6    | 00154     |            | 55        | Sity SAND (111), dark brown, wet, 100se, The medium grained.      | notentially lower classification                                           | 1        | 1        | 1     | 1        | 1            | -                | -     |
| BH014_0.0 0.0    | Q0104     |            | 0.0       | Silty SAND (Fill) dark brown wet loose fine-medium grained        | Sampled to delineate asbestos located in B016 at denth                     |          |          |       |          |              |                  |       |
| BH015 5 0 5-0 6  | _         | _          | 66        | Sity SAND (111), dark brown, wet, 100se, The medium grained.      | Sampled to defineate aspestos located in Do to at deptin                   | 1        | 1        | 1     | 1        | 1            | -                | -     |
| DI1013.3_0.3-0.0 | _         | -          | 0.0       | Silty SAND (Fill) dark brown wet loose, fine-medium grained       | Sampled to delineate ashestos located in B016 at denth                     |          |          |       |          | 1            |                  |       |
| BH016 0 0-0 2    | _         |            | 37        | trace shells and ironstone gravels                                | Sampled to defineate aspestos located in Do to at deptin                   | 1        | 1        | 1     | 1        | 1            | 1                | 1     |
| BH010_0.0 0.2    |           |            | 5.1       | Silty SAND (Fill) dark brown wet loose fine-medium grained        | Sampled to delineate ashestos located in B016 at denth                     |          |          |       |          |              | 1                | 1     |
| BH0165 04-05     | _         |            | 4 1       | trace silt                                                        | Campica to define as estos located in Do To at deptin                      | 1        | 1        | 1     | 1        | 1            | -                | -     |
| DI1010.0_0.4 0.0 |           |            | 7.1       | SAND (Fill) grey brown wet loose fine to coarse grained trace     | Sampled to delineate ashestos located in B016 at denth                     |          |          |       |          | •            |                  |       |
| B016.5 0.0-0.2   | - I       | -          | 7         | silt                                                              | complete to demotic assestes located in Doro at deptil                     | 1        | 1        | 1     | 1        | 1            | -                | -     |
| 2310.0_0.0 0.2   | -         |            | ,         | Silty SAND (Fill) dark brown moist loose fine-medium              | Sampled in southern portion of site to confirm historical results          | <u> </u> | <u> </u> | - '   | <u> </u> |              |                  |       |
| B031 0 0-0 2     | - I       | -          | 39        | grained trace silt                                                | of no asbestos                                                             | 1        | 1        | 1     | 1        | 1            | -                | -     |
| 2301_0.0 0.2     |           |            | 0.0       | SAND (Fill) white with grey moist loose fine to coarse grained    | Sampled in southern portion of site to confirm historical results          | <u> </u> | <u> </u> | -     |          |              |                  |       |
| B031_0.5-0.6     | l .       | -          | 21        | trace silt.                                                       | of no asbestos                                                             | 1        | 1        | 1     | 1        | 1            | -                | -     |
|                  | 1         |            |           | Silty Clavey SAND(Fill), dark brown wet loose fine to medium      | Sampled in southern portion of site to confirm historical results          | <u> </u> | <u> </u> |       | · ·      |              |                  |       |
| B032 0.0-0.2     | QC152     | -          | 4         | arained.                                                          | of no asbestos                                                             | 1        | 1        | 1     | 1        | 1            | 1                | 1     |
|                  |           |            |           | SAND (Fill), grey brown, wet, loose fine to medium grained        | Sampled in southern portion of site to confirm historical results          | †        | † .      |       | · ·      | · · ·        | · · ·            | · · · |
| B032 0.5-0.6     | -         | -          | 4.6       | trace silt.                                                       | of no asbestos                                                             | 1        | 1        | 1     | 1        | 1            | -                | -     |
|                  |           |            | -         |                                                                   |                                                                            |          |          |       |          |              |                  |       |

|              |           |            |          |                                                                     |                                                                   |        |     |       | Anal  | ytical Suite           |                              |      |
|--------------|-----------|------------|----------|---------------------------------------------------------------------|-------------------------------------------------------------------|--------|-----|-------|-------|------------------------|------------------------------|------|
| Primary ID   | Duplicate | Triplicate | PID (ppm | Sample Description                                                  | Rationale                                                         | Metals | ТРН | BTEXN | B(a)P | Asbestos<br>(presence) | Asbestos<br>(quantification) | TCLP |
|              |           |            |          | Sandy CLAY (Fill), grey brown, moist, low to medium plasticity,     | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
| B033_0.0-0.2 | -         | -          | -        | inclusions of organic matter.                                       | of no asbestos                                                    | 1      | 1   | 1     | 1     | 1                      | 1                            | -    |
|              |           |            |          | Sandy CLAY (Fill), grey brown, moist, low to medium plasticity,     | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
|              |           |            |          | inclusions of organic matter, black mottling possible               | of no asbestos                                                    |        |     |       |       |                        | -                            | -    |
| B033_0.5-0.6 | -         | -          | 4        | hydrocarbon staining.                                               |                                                                   | 1      | 1   | 1     | 1     | 1                      |                              |      |
|              |           |            |          | Sand (Fill), grey brown, moist, loose, fine to medium grained,      | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
| B034_0.0-0.2 | -         | -          | 4.9      | trace silt, minor organic matter.                                   | of no asbestos                                                    | 1      | 1   | 1     | 1     | 1                      | -                            | -    |
|              |           |            |          | Sand (Fill), grey brown, moist, loose, fine to medium grained,      | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
|              |           |            |          | trace silt, minor organic matter, black mottling possible           | of no asbestos                                                    |        |     |       |       |                        | -                            | -    |
| B034_0.5-0.6 | -         | -          | 5        | hydrocarbon staining.                                               |                                                                   | 1      | 1   | 1     | 1     | 1                      |                              |      |
|              |           |            |          | Sandy CLAY (Fill), grey brown, moist, low to medium plasticity,     | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
| B035_0.0-0.2 | -         | -          | 2.8      | inclusions of organic matter.                                       | of no asbestos                                                    | 1      | 1   | 1     | 1     | 1                      | -                            | 1    |
|              |           |            |          | Sandy CLAY (Fill), dark grey brown, moist, low to medium            | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
| B035_0.5-0.6 | -         | QC151      | 3.6      | plasticity, inclusions of organic matter.                           | of no asbestos                                                    | 1      | 1   | 1     | 1     | 1                      | -                            | -    |
|              |           |            |          | Silty SAND (Fill), grey brown, wet, loose, fine-medium grained,     | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
| B036_0.0-0.2 | -         | -          | 3.1      | trace clay, inlcusions of organic matter.                           | of no asbestos                                                    | 1      | 1   | 1     | 1     | 1                      | 1                            | 1    |
|              |           |            |          | Silty Clayey SAND (Fill), grey brown, wet, loose, fine-medium       | Sampled in southern portion of site to confirm historical results |        |     |       |       |                        |                              |      |
| B036_0.5-0.6 | -         | -          | 0.7      | grained, trace clay, minor inlcusions of organic matter.            | of no asbestos                                                    | 1      | 1   | 1     | 1     | 1                      | 1                            | -    |
| Area C       |           |            |          |                                                                     |                                                                   |        |     |       |       |                        |                              |      |
|              |           |            |          | Silty SAND (Fill), dark brown, loose, slightly moist, fine to       | Confirm / delineate the asbestos detection from TP30 sampled      |        |     |       |       |                        |                              |      |
| C011_0.0-0.2 | -         | -          | 0.9      | medium grained.                                                     | by PB                                                             | 1      | 1   | 1     | 1     | 1                      | -                            | -    |
|              |           |            |          | Gravelly Silty SAND (Fill), dark brown, loose, slightly moist, fine | Confirm / delineate the asbestos detection from TP30 sampled      |        |     |       |       |                        |                              |      |
| C012_0.0-0.2 | -         | -          | 1        | to medium grained, fine ironstone and concrete gravels.             | by PB                                                             | 1      | 1   | 1     | 1     | 1                      | -                            | -    |
|              |           |            |          | Not sampled due to 0.5m of pooled water within bund.                | Not sampled previously due to concrete slab. If slab is removed   |        |     |       |       |                        |                              |      |
| C013_0.0-0.2 | -         | -          | -        |                                                                     | sample to be taken                                                | -      | -   | -     | -     | -                      | -                            | -    |
|              |           |            |          | Not sampled due to 0.5m of pooled water within bund.                | Not sampled previously due to concrete slab. If slab is removed   |        |     |       |       |                        |                              |      |
| C013_0.4-0.5 | -         | -          | -        |                                                                     | sample to be taken                                                | -      | -   | -     | -     | -                      | -                            | -    |
|              |           |            |          |                                                                     | Total                                                             | 35     | 35  | 35    | 35    | 35                     | 14                           | 10   |

PID = Photoionisation Detector (PID) volatile organic compound (VOC) reading in parts per million (ppm). Metals = arsenic, beryllium, cadmium, chromium, lead, molybdenum, nickel, selenium, silver and mercury.

BTEXN = benzene, toluene, ethylbenzene, xylenes and naphthalene

TPH = total petroleum hydrocarbons

B(a)P = benzo(a)pyrene

TCLP = toxicity characteristic leaching procedure

|                            |     |        |          |         |          |          |         |                  | Area A         | Area A         | Area A      | Area A          | Area A         | Area A         | Area A          | Area A          | Area A         | Area A           |
|----------------------------|-----|--------|----------|---------|----------|----------|---------|------------------|----------------|----------------|-------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|------------------|
|                            |     | -      |          |         |          |          |         | Sample ID        | A003.5 0.0-0.2 | A005.5 0.0-0.2 | QC155       | A006.5 0.0-0.2  | A007.5 0.0-0.2 | A008.5 0.0-0.2 | A013.5 0.0-0.2  | QC157           | A013.5 0.4-0.5 | A014.5 0.4-0.5   |
|                            |     | NSW EF | A (2014) | WASTECL | ASSIFICA | TION GUI | DELINES | Sample Date      | 16/03/2016     | 16/03/2016     | 16/03/2016  | 16/03/2016      | 16/03/2016     | 16/03/2016     | 16/03/2016      | 16/03/2016      | 16/03/2016     | 16/03/2016       |
|                            |     |        |          |         |          |          |         | Sample Type      | P              | Р              | FD          | P               | P              | P              | Р               | FD              | Р              | Р                |
| Parameter                  | LOR | CT1    | SCC1     | TCI P1  | CT2      | SCC2     | TCL P2  | Lab. Sample Ref. | ES1606083025   | ES1606083026   | S16-Ma18367 | ES1606083027    | ES1606083028   | ES1606083029   | ES1606083031    | ES1606083041    | ES1606083032   | ES1606083033     |
|                            |     | UII    | 0001     | 10211   | 012      | 0002     | 10212   | Sample           |                |                |             |                 |                |                |                 |                 |                |                  |
|                            |     |        |          |         |          |          |         | Classification   | Hazardous      | GSW            | GSW         | SW(A)/Hazardous | Hazardous      | Hazardous      | SW(A)/Hazardous | SW(A)/Hazardous | SW(A)/GSW      | SW(A)/GSW        |
|                            |     | mg/kg  | mg/kg    | mg/L    | mg/kg    | mg/kg    | mg/L    | Units            |                |                |             |                 |                |                |                 |                 |                |                  |
| Moisture Content           | 1   |        |          |         |          |          |         | %                | 20.3           | <1.0           | <1          | 3.2             | 10.4           | 7.9            | 27.5            | 43.1            | 19.1           | 19.6             |
| Aspestos Detected          | 0.1 |        |          |         |          |          |         | д/кд             | INO            | INO            |             | res             | INO            | NO             | fes             |                 | res            | Yes              |
| Aspestos Type              | 0   |        |          |         |          |          |         |                  | -              | - 694          |             | AIII<br>552     | -              | - 297          | 297             |                 | 761            | AIII + CI<br>922 |
| Sample weight (dry)        | 5   | 100    |          |         | 400      |          |         | y<br>ma/ka       |                | 6              | 6           | 555             | 310            | 307            | 207             |                 | 101            | -5               |
| Rarium                     | 10  | 100    |          | -       | 400      |          |         | mg/kg            | 20             | <10            | 0           | 20              | 20             | 20             | 30              | 40              | <10            | <0               |
| Banullium                  | 10  | 20     |          |         | 80       |          |         | mg/kg            | 20             | <10            | - 2         | 20              | 20             | -1             | 20              | 40              | <10            | <10              |
| Boron                      | 50  |        |          |         |          |          |         | mg/kg            | <50            | <50            | < 10        | <50             | <50            | <50            | <50             | <50             | <50            | <50              |
| Cadmium                    | 1   | 20     |          |         | 80       |          |         | mg/kg            | <00            | <00            | < 0.4       | <00             | <1             | <00            | <1              | <1              | <1             | <1               |
| Chromium                   | 2   | 100    |          |         | 400      |          |         | mg/kg            | 31             | 36             | < 1         | 98              | 40             | 32             | 45              | 53              | 2              | 4                |
| Chromium (TCLP)            | ~   |        | 1900     | 5       |          | 7600     | 20      | ma/l             |                |                |             |                 |                |                |                 |                 |                | -                |
| Cobalt                     | 2   |        |          |         |          |          |         | ma/ka            | 4              | 4              | < 5         | 4               | <2             | 5              | 3               | 5               | <2             | <2               |
| Copper                     | 5   |        |          |         |          |          |         | ma/ka            | 69             | 94             | 84          | 95              | 40             | 47             | 34              | 46              | <5             | <5               |
| Lead                       | 5   | 100    | 1500     |         | 400      | 6000     |         | ma/ka            | 99             | 160            | 140         | 348             | 85             | 95             | 47              | 58              | <5             | 6                |
| Lead (TCLP)                |     |        |          | 5       |          |          | 20      | ma/L             |                | 0.1            |             | 0.5             |                |                |                 |                 |                |                  |
| Manganese                  | 5   |        |          | -       |          |          |         | ma/ka            | 55             | 29             | 28          | 44              | 24             | 96             | 70              | 132             | 11             | 6                |
| Nickel                     | 2   | 40     | 1050     |         | 160      | 4200     |         | ma/ka            | 11             | 5              | 5.6         | 8               | 7              | 13             | 12              | 24              | <2             | <2               |
| Nickel (TCLP)              |     |        |          | 2       |          |          | 8       | mg/L             |                |                |             |                 |                |                |                 |                 |                |                  |
| Selenium                   | 5   | 20     |          |         | 80       |          |         | mg/kg            | <5             | <5             | < 2         | <5              | 0              | <5             | <5              | <5              | <5             | <5               |
| Vanadium                   | 5   |        |          |         |          |          |         | mg/kg            | 9              | <5             |             | 6               | 8              | 13             | 10              | 14              | <5             | <5               |
| Zinc                       | 5   |        |          |         |          |          |         | mg/kg            | 407            | 713            | 700         | 932             | 206            | 911            | 415             | 581             | <5             | 35               |
| Mercury                    | 0.1 | 4      | 50       |         | 16       | 200      |         | mg/kg            | 0.2            | <0.1           | 0.13        | 0.1             | 0.2            | 0.3            | 0.5             | 0.7             | <0.1           | 0.1              |
| Mercury (TCLP)             |     |        |          | 0.2     |          |          | 0.8     | mg/L             |                |                |             |                 |                |                |                 |                 |                | -                |
| Benzo(a)pyrene             | 0.5 | 0.8    | 10       |         | 3.2      | 23       |         | mg/kg            | <0.5           | <0.5           | < 0.5       | 17.2            | <4.0           | <0.5           | <4.0            | <4.0            | <0.5           | <0.5             |
| Benzo(a)pyrene (TCLP)      |     |        |          | 0.04    |          |          | 0.16    | mg/L             |                |                | -           | <0.0005         |                |                |                 |                 |                |                  |
| C6 - C9 Fraction           | 10  | 650    |          |         | 2600     |          |         | mg/kg            | <10            | <10            | < 20        | <10             | 12             | <10            | <10             | <10             | <10            | <10              |
| C10 - C14 Fraction         | 50  |        |          |         |          |          |         | mg/kg            | <50            | <50            | < 20        | 870             | 2740           | 1090           | 630             | <50             | <50            | <50              |
| C15 - C28 Fraction         | 100 |        |          |         |          |          |         | mg/kg            | 65000          | 2480           | 2900        | 41000           | 98300          | 67800          | 61000           | 120000          | 230            | 750              |
| C29 - C36 Fraction         | 100 |        |          |         |          |          |         | mg/kg            | 6740           | 260            | 390         | 13300           | 4760           | 4940           | 15800           | 28400           | <100           | <100             |
| C10 - C36 Fraction (sum)*  | 50  | 10000  |          |         | 40000    |          |         | mg/kg            | 71700          | 2740           | 3300        | 55200           | 106000         | 73800          | 77400           | 148000          | 230            | 750              |
| C10 - C36 Fraction (sum)** | 40  | 10000  |          |         | 40000    |          |         | mg/kg            | /1/90          | 2790           | 3310        | 55170           | 105800         | 73830          | //430           | 148450          | 380            | 900              |
| Co - CTU Fraction          | 10  |        |          |         |          |          |         | mg/kg            | <10            | <10            | < 20        | <10             | 20             | <10            | <10             | <10             | <10            | <10              |
| FI<br>>C10 - C16 Eraction  | 10  |        | _        | -       |          |          |         | mg/kg            | <10            | <10            | < 20        | <10             | 19             | <10            | <10             | <10             | <10            | <10              |
| >C16 - C24 Eraction        | 100 |        | _        | -       |          |          |         | mg/kg            | 5590           | 2500           | < 00        | 2910            | 86600          | 64600          | 2440            | 3200            | 200            | 200              |
| >C16 - C34 Flaction        | 100 |        |          | -       |          |          |         | mg/kg            | 3940           | 2090           | 200         | 6930            | 2060           | 2920           | 0120            | 16400           | <100           | <100             |
| >C10 - C40 Fraction (sum)  | 50  |        |          |         |          |          |         | ma/ka            | 75000          | 2690           | 3500        | 59100           | 108000         | 75300          | 83700           | 160000          | 270            | 810              |
| F2                         | 50  |        |          |         |          |          |         | ma/ka            | 5390           | 100            | < 50        | 2910            | 18100          | 7900           | 2440            | 3200            | 70             | 280              |
| Benzene                    | 0.2 | 10     |          |         | 40       |          |         | ma/ka            | <0.2           | <0.2           | < 0.1       | <0.2            | <0.2           | <0.2           | <0.2            | <0.2            | <0.2           | <0.2             |
| Toluene                    | 0.5 | 288    |          |         | 1152     |          |         | ma/ka            | <0.5           | <0.5           | < 0.1       | <0.5            | <0.5           | <0.5           | <0.5            | <0.5            | <0.5           | <0.5             |
| Ethylbenzene               | 0.5 | 600    |          |         | 2400     |          |         | ma/ka            | <0.5           | <0.5           | < 0.1       | <0.5            | <0.5           | <0.5           | <0.5            | <0.5            | <0.5           | <0.5             |
| meta- & para-Xylene        | 0.5 |        |          |         |          |          |         | ma/ka            | <0.5           | <0.5           | < 0.2       | <0.5            | 1.6            | <0.5           | <0.5            | <0.5            | <0.5           | <0.5             |
| ortho-Xvlene               | 0.5 |        |          |         |          |          |         | ma/ka            | <0.5           | <0.5           | < 0.1       | <0.5            | <0.5           | <0.5           | <0.5            | <0.5            | <0.5           | <0.5             |
| Total Xylenes              | 0.5 | 1000   |          |         | 4000     |          |         | ma/ka            | <0.5           | <0.5           | < 0.3       | <0.5            | 1.6            | <0.5           | <0.5            | <0.5            | <0.5           | <0.5             |
| Sum of BTEX                | 0.2 |        |          |         |          |          |         | mg/kg            | <0.2           | <0.2           |             | <0.2            | 1.6            | <0.2           | <0.2            | <0.2            | <0.2           | <0.2             |
| Naphthalene                | 1   |        |          |         |          |          |         | mg/kg            | <1             | <1             |             | <1              | <1             | <1             | <1              | <1              | <1             | <1               |

Notes: CT - Contaminant Threshold SCC - Specific Contamaintant Concentration TCLP - Toxicity Characteristic Leaching Procedure GSW - General Solid Waste SW(A) - Special Waste Asbestos RSW - Restricted Solid Waste F1 C6 - C10 Fraction minus BTEX F2 >C10 - C16 Fraction minus Naphthalene P = Primary Sample \* 0 X LOR in sum of fractions \*\* 1 x LOR in sum of fractions

CT1 - CT for General Solid Waste (with no TCLP) CT2 - CT for Restricted Solid Waste (with no TCLP) SCC1 - SCC for General Solid Waste SCC (with TCLP analysis) SCC2 - SCC for Restricted Solid Waste SCC (with TCLP analysis) TCLP1 - TCLP for General Solid Waste TCLP2 - TCLP for Restricted Solid Waste < = less than laboratory limit of reporting (LOR) Am - amosite Ch - chrysotile FD = Field duplicate

|                            |       |        |           |         |          |          |         |                  | Area A      | Area B       | Area B              | Area B         | Area B              | Area B          | Area B          | Area B         | Area B       | Area B       |
|----------------------------|-------|--------|-----------|---------|----------|----------|---------|------------------|-------------|--------------|---------------------|----------------|---------------------|-----------------|-----------------|----------------|--------------|--------------|
|                            |       | -      |           |         |          | TION OU  |         | Sample ID        | QC158       | B001 0.0-0.2 | B003.5 0.0-0.2      | B007.5 0.0-0.2 | B009.5 0.0-0.2      | B010.5 0.0-0.2  | QC150           | B012.5 0.0-0.2 | B014 0.0-0.2 | B014 0.5-0.6 |
|                            |       | NSW EF | PA (2014) | WASTECL | ASSIFICA | TION GUI | DELINES | Sample Date      | 16/03/2016  | 14/03/2016   | 14/03/2016          | 14/03/2016     | 14/03/2016          | 14/03/2016      | 14/03/2016      | 14/03/2016     | 15/03/2016   | 15/03/2016   |
|                            |       |        |           |         |          |          |         | Sample Type      | FD          | P            | P                   | Р              | P                   | P               | FD              | P              | Р            | P            |
| Parameter                  | LOR   | CT1    | SCC1      | TCI P1  | CT2      | SCC2     | TCI P2  | Lab. Sample Ref. | S16-Ma18368 | ES1606083001 | ES1606083002        | ES1606083003   | ES1606083004        | ES1606083005    | ES1606083036    | ES1606083006   | ES1606083023 | ES1606083024 |
|                            |       | UII    | 0001      | 10211   | 012      | 0002     | 10212   | Sample           |             |              |                     |                |                     |                 |                 |                |              |              |
|                            |       |        |           |         |          |          |         | Classification   | SW(A)/GSW   | SW(A)/RW     | SW(A)/RW            | SW(A)/GSW      | SW(A)/RW            | SW(A)/Hazardous | SW(A)/Hazardous | GSW            | Hazardous    | GSW          |
|                            |       | mg/kg  | mg/kg     | mg/L    | mg/kg    | mg/kg    | mg/L    | Units            |             |              |                     |                |                     |                 |                 |                |              |              |
| Moisture Content           | 1     |        |           |         |          |          |         | %                | 21          | 2.8          | 4.1                 | <1.0           | 46.4                | 23.9            | 24.3            | 27.8           | 24.4         | 19.3         |
| Aspestos Detected          | 0.1   |        |           |         |          |          |         | д/кд             | -           | Yes          | Yes                 | Yes            | Yes                 | Yes             |                 | NO             | NO           | NO           |
| Asbestos Type              | 0     |        |           |         |          |          |         | -                |             | Am           | AM                  | Am             | Am + (Trace-Am)     | Am              |                 | -              | -            | -            |
| Sample weight (dry)        | 0     |        |           |         |          |          |         | g                |             | 331          | 238                 | 614            | 141                 | 185             |                 | 240            | 410          | 6/9          |
| Arsenic                    | 5     | 100    |           |         | 400      |          |         | mg/kg            | 8.8         | 120          | 14                  | 30             | 24                  | 70              | 8               | 18             | 10           | <0           |
| Barlum                     | 10    |        |           |         |          | -        |         | mg/kg            | . 0         | 130          | 110                 | 30             | 490                 | 70              | 90              | 80             | 10           | <10          |
| Bergillum                  | 50    | 20     |           |         | 00       |          |         | mg/kg            | < 2         | <1           | <1                  | <1             | <1                  | <1              | <1              | <1             | <1           | <1           |
| Boluli                     | 30    | 20     |           |         | 80       |          |         | mg/kg            | < 10        | <00          | <00                 | <00            | <00                 | <00             | <00             | <00            | < 30         | <00          |
| Chromium                   | 2     | 100    |           | -       | 400      |          |         | mg/kg            | < 0.4       | 24           | 107                 | 61             | 152                 | 72              | 70              | 26             | <            | <1           |
| Chromium (TCL B)           | 2     | 100    | 1000      | 5       | 400      | 7600     | 20      | mg/kg            | < 1         | 24           | 107                 | 01             | 102                 | 73              | 70              | 30             | 0            | <2           |
| Cobalt                     | 2     |        | 1300      |         |          | 7000     | 20      | mg/kg            |             |              | <u.1<br>15</u.1<br> | 19             | <u.1<br>46</u.1<br> |                 |                 | 7              |              | -2           |
| Coppor                     | 5     |        |           | -       |          |          |         | mg/kg            | 83          | 1/1          | 117                 | 472            | 725                 | 220             | 157             | 151            | 17           | <5           |
| Lead                       | 5     | 100    | 1500      |         | 400      | 6000     |         | mg/kg            | 15          | 50           | 144                 | 621            | 303                 | 230             | 124             | 204            | 16           | <5           |
| Lead (TCLP)                | 5     | 100    | 1000      | 5       | 400      | 0000     | 20      | ma/l             |             |              | <01                 | <01            | <0.1                | 0.1             | 124             | <01            |              |              |
| Manganese                  | 5     |        |           | - Ŭ     |          |          |         | mg/ka            | 12          | 277          | 447                 | 129            | 1220                | 172             | 164             | 123            | 28           | <5           |
| Nickel                     | 2     | 40     | 1050      |         | 160      | 4200     |         | mg/kg            | < 5         | 20           | 41                  | 30             | 153                 | 53              | 40              | 22             | 5            | 40<br>62     |
| Nickel (TCLP)              | ~     | 10     |           | 2       |          |          | 8       | ma/l             |             |              | <0.1                |                | 0.1                 | <0.1            |                 |                |              |              |
| Selenium                   | 5     | 20     |           |         | 80       |          |         | ma/ka            | < 2         | <5           | <5                  | <5             | <5                  | <5              | <5              | <5             | <5           | <5           |
| Vanadium                   | 5     |        |           |         |          |          |         | ma/ka            |             | 37           | 60                  | 10             | 112                 | 27              | 29              | 13             | 5            | <5           |
| Zinc                       | 5     |        |           |         |          |          |         | ma/ka            | 130         | 1530         | 1710                | 6560           | 9100                | 4080            | 2580            | 2240           | 510          | 10           |
| Mercury                    | 0.1   | 4      | 50        |         | 16       | 200      |         | ma/ka            | 0.3         | 5.2          | 2.1                 | 0.3            | 61.7                | 17.6            | 14.7            | 3.7            | 0.2          | <0.1         |
| Mercury (TCLP)             |       |        |           | 0.2     |          |          | 0.8     | mg/L             |             | < 0.001      |                     |                | <0.001              | <0.001          |                 |                |              | -            |
| Benzo(a)pyrene             | 0.5   | 0.8    | 10        |         | 3.2      | 23       |         | mg/kg            | < 0.5       | 1.4          | <0.5                | <0.5           | <0.5                | <0.5            | <4.0            | <0.5           | 1.2          | <0.5         |
| Benzo(a)pyrene (TCLP)      |       |        |           | 0.04    |          |          | 0.16    | mg/L             |             | <0.0005      |                     |                |                     |                 |                 |                | <0.0005      |              |
| C6 - C9 Fraction           | 10    | 650    |           |         | 2600     |          |         | mg/kg            | < 20        | <10          | <10                 | <10            | <10                 | <10             | <10             | <10            | 13           | <10          |
| C10 - C14 Fraction         | 50    |        |           |         |          |          |         | mg/kg            | 65          | <50          | <50                 | <50            | <50                 | 1660            | <50             | <50            | <50          | <50          |
| C15 - C28 Fraction         | 100   |        |           |         |          |          |         | mg/kg            | 1200        | 15200        | 11600               | <100           | 1090                | 66700           | 107000          | <100           | 4720         | 670          |
| C29 - C36 Fraction         | 100   |        |           |         |          |          |         | mg/kg            | < 50        | 9350         | 8160                | <100           | 1350                | 35300           | 41300           | <100           | 12100        | 1480         |
| C10 - C36 Fraction (sum)*  | 50    | 10000  |           |         | 40000    |          |         | mg/kg            | 1300        | 24600        | 19800               | <50            | 2440                | 104000          | 148000          | <50            | 16800        | 2150         |
| C10 - C36 Fraction (sum)** |       | 10000  |           |         | 40000    |          |         | mg/kg            | 1265        | 24600        | 19810               | 250            | 2490                | 103660          | 148350          | <250           | 16870        | 2200         |
| C6 - C10 Fraction          | 10    |        |           |         |          |          |         | mg/kg            | < 20        | <10          | <10                 | <10            | <10                 | <10             | <10             | <10            | <10          | <10          |
| F1                         | 10    |        |           |         |          |          |         | mg/kg            | < 20        | <10          | <10                 | <10            | <10                 | <10             | <10             | <10            | <10          | <10          |
| >C10 - C16 Fraction        | 50    |        |           |         |          |          |         | mg/kg            | 240         | 290          | <50                 | <50            | <50                 | 5750            | 14200           | <50            | 140          | 50           |
| >C16 - C34 Fraction        | 100   |        |           |         |          |          |         | mg/kg            | 1000        | 22500        | 17900               | <100           | 2040                | 91700           | 129000          | <100           | 13000        | 1660         |
| >C34 - C40 Fraction        | 100   |        |           |         |          |          |         | mg/kg            | < 100       | 6160         | 4230                | <100           | 940                 | 16000           | 19800           | <100           | 16400        | 1970         |
| >C10 - C40 Fraction (sum)  | 50    |        |           |         |          |          |         | mg/kg            |             | 29000        | 22100               | <50            | 2980                | 113000          | 163000          | <50            | 29500        | 3680         |
| F2                         | 50    |        |           |         |          |          |         | mg/kg            | 240         | 290          | <50                 | <50            | <50                 | 5750            | 14200           | <50            | 140          | 50           |
| Benzene                    | 0.2   | 10     |           |         | 40       |          |         | mg/kg            | < 0.1       | <0.2         | <0.2                | <0.2           | <0.2                | <0.2            | <0.2            | <0.2           | <0.2         | <0.2         |
| I oluene                   | 0.5   | 288    |           |         | 1152     |          |         | mg/kg            | < 0.1       | <0.5         | <0.5                | <0.5           | <0.5                | <0.5            | <0.5            | <0.5           | <0.5         | <0.5         |
| Ethylbenzene               | 0.5   | 600    |           |         | 2400     |          |         | mg/kg            | < 0.1       | <0.5         | <0.5                | <0.5           | <0.5                | <0.5            | <0.5            | <0.5           | <0.5         | <0.5         |
| ortho Xulono               | 0.5   |        |           |         |          |          |         | mg/kg            | < 0.2       | <0.5         | <0.5                | <0.5           | <0.5                | <0.5            | <0.5            | <0.5           | U.5          | 0.7          |
| Total Vidence              | 0.5   | 1000   |           |         | 4000     |          |         | mg/kg            | < 0.1       | <0.5         | <0.5                | <0.5           | <0.5                | <0.5            | <0.5            | <0.5           | <0.5         | <0.5         |
| Sum of PTEX                | 0.5   | 1000   |           |         | 4000     |          |         | mg/kg            | < 0.3       | <0.5         | <0.5                | <0.5           | <0.5                | <0.5            | <0.5            | <0.5           | 0.5          | 0.7          |
| Sum or BIEA                | 0.2   |        |           |         |          |          |         | mg/kg            |             | <0.2         | <0.2                | <0.2           | <0.2                | <0.2            | <0.2            | <0.2           | 0.5          | 0.7          |
| Naprimaiene                | 1 1 1 |        |           |         |          |          |         | rng/kg           |             | <1           | <1                  | <1             | <1                  | <1              | <1              | < 1            | <1           | <1           |

CT - Contaminant Threshold SCC - Specific Contamiantant Concentration TCLP - Toxicity Characteristic Leaching Procedure GSW - General Solid Waste SW(A) - Special Waste Asbestos RSW - Restricted Solid Waste F1 C6 - C10 Fraction minus BTEX F2 - C10 - C16 Fraction minus Naphthalene P = Primary Sample \* 0 X LOR in sum of fractions CT1 - CT for General Solid Waste (with no TCLP) CT2 - CT for Restricted Solid Waste (with no TCLP) SCC1 - SCC for General Solid Waste SCC (with TCLP analysis) SCC2 - SCC for General Solid Waste SCC (with TCLP analysis) TCLP1 - TCLP for General Solid Waste CLP2 - TCLP for Restricted Solid Waste < = less than laboratory limit of reporting (LOR) Am - amosite Ch - chrysotile FD = Field duplicate

|                            |     |        |           |          |          |          |         |                  | Area B       | Area B         | Area B       | Area B         | Area B         | Area B       | Area B       | Area B       | Area B       | Area B       |
|----------------------------|-----|--------|-----------|----------|----------|----------|---------|------------------|--------------|----------------|--------------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|
|                            |     | 1000   |           |          | 10015101 |          |         | Sample ID        | QC154        | B015.5 0.5-0.6 | B016 0.0-0.2 | B016.5 0.0-0.2 | B016.5 0.5-0.6 | B031 0.0-0.2 | B031 0.5-0.6 | B032 0.0-0.2 | QC152        | B032 0.5-0.6 |
|                            |     | NSW EF | PA (2014) | WASTE CL | ASSIFICA | TION GUI | DELINES | Sample Date      | 15/03/2016   | 15/03/2016     | 15/03/2016   | 15/03/2016     | 15/03/2016     | 15/03/2016   | 15/03/2016   | 15/03/2016   | 15/03/2016   | 15/03/2016   |
|                            |     |        |           |          |          |          |         | Sample Type      | FD           | Р              | Р            | P              | Р              | P            | P            | P            | FD           | Р            |
| Parameter                  | LOR | CT1    | 8001      | TCI P1   | CTO      | \$002    | TCI P2  | Lab. Sample Ref. | ES1606083039 | ES1606083022   | ES1606083021 | ES1606083019   | ES1606083020   | ES1606083017 | ES1606083018 | ES1606083015 | ES1606083038 | ES1606083016 |
|                            |     | UII    | 3001      | TOLFT    | 012      | 3002     | TOLFZ   | Sample           |              |                |              |                |                |              |              |              |              |              |
|                            |     |        |           |          |          |          |         | Classification   | GSW          | GSW            | SW(A)/RW     | GSW            | GSW            | GSW          | GSW          | SW(A)/GSW    | SW(A)/GSW    | GSW          |
|                            |     | mg/kg  | mg/kg     | mg/L     | mg/kg    | mg/kg    | mg/L    | Units            |              |                |              |                |                |              |              |              |              |              |
| Moisture Content           | 1   |        |           |          |          |          |         | %                | 19.3         | 19.6           | 40.2         | 24.7           | 18.6           | 22.3         | 14.9         | 48.5         | 45.9         | 19.4         |
| Asbestos Detected          | 0.1 |        |           |          |          |          |         | g/kg             |              | No             | Yes          | No             | No             | No           | No           | Yes          |              | No           |
| Asbestos Type              |     |        |           |          |          |          |         |                  |              | -              | Am           | -              | -              | -            | -            | Am           |              | -            |
| Sample weight (dry)        | 0   |        |           |          |          |          |         | g                | -            | 886            | 367          | 422            | 274            | 469          | 438          | 292          |              | 440          |
| Arsenic                    | 5   | 100    |           |          | 400      |          |         | mg/kg            | <5           | <5             | 9            | <5             | <5             | <5           | <5           | /            | 5            | <5           |
| Barium                     | 10  |        |           |          |          |          |         | mg/kg            | <10          | <10            | 80           | <10            | <10            | 30           | <10          | 90           | 50           | <10          |
| Beryllium                  | 1   | 20     |           |          | 80       |          |         | mg/kg            | <1           | <1             | <1           | <1             | <1             | <1           | <1           | <1           | <1           | <1           |
| Boron                      | 50  |        |           |          |          |          |         | mg/kg            | <50          | <50            | <50          | <50            | <50            | <50          | <50          | <50          | <50          | <50          |
| Cadmium                    | 1   | 20     |           |          | 80       |          |         | mg/kg            | <1           | <1             | <1           | <1             | <1             | <1           | <1           | <1           | <1           | <1           |
| Chromium                   | 2   | 100    | 4000      | -        | 400      | 7000     | 20      | mg/kg            | <2           | <2             | 24           | 4              | 19             | 23           | 6            | 45           | 37           | /            |
| Chromium (TCLP)            | -   |        | 1900      | 5        |          | 7600     | 20      | mg/L             |              |                |              |                |                |              | -            |              |              |              |
| Cobalt                     | 2   |        |           |          |          |          |         | mg/kg            | <2           | <2             | 7            | <2             | <2             | 11           | <2           | 11           | 10           | <2           |
| Copper                     | 5   |        | 4500      |          |          | c000     |         | mg/kg            | <5           | <5             | 500          | 14             | <5             | 110          | <5           | 72           | 58           | <5           |
| Lead                       | 5   | 100    | 1500      | -        | 400      | 6000     | 20      | mg/kg            | <5           | <5             | 109          | 16             | <5             | 87           | 50           | 82           | 68           | <5           |
| Lead (TCLP)                | -   |        |           | 5        |          |          | 20      | mg/L             |              |                | <0.1         |                |                |              | -            |              |              | -            |
| Manganese                  | 5   |        | 4050      |          |          | 4200     |         | mg/kg            | <0           | <5             | 589          | 15             | <0             | 192          | <0           | 2/0          | 219          | <0           |
| Nickel                     | 2   | 40     | 1050      |          | 160      | 4200     | ~       | mg/kg            | <2           | <2             | 25           | 3              | 9              | 34           | 3            | 51           | 47           | 5            |
| NICKEI (TCLP)              | -   |        |           | 2        | 90       |          | ð       | mg/L             |              |                |              |                |                |              | -            | <0.1         |              | -            |
| Selenium                   | 5   | 20     |           |          | 00       |          |         | mg/kg            | <5           | <5             | <5           | <0             | <0             | <0           | <0           | <0           | <5           | <0           |
| Vanadium                   | 5   |        |           |          |          |          |         | mg/kg            | <5           | <5             | 32           | <5             | <5             | 19           | <5           | 34           | 26           | 1            |
| ZINC                       | 5   |        | 50        |          |          | 200      |         | mg/kg            | 62           | <5             | 811          | 134            | 10             | 930          | 10           | 1930         | 1530         | <0           |
| Mercury                    | 0.1 | 4      | 50        |          | 10       | 200      | 0.0     | mg/kg            | <0.1         | <0.1           | 1.6          | 0.1            | <0.1           | 0.3          | <0.1         | 0.4          | 0.4          | <0.1         |
| Mercury (TCLP)             | 0.5 | 0.0    | 10        | 0.2      | 2.2      | 22       | 0.0     | mg/L             |              |                |              |                |                |              |              |              |              |              |
| Benzo(a)pyrene             | 0.5 | 0.8    | 10        | 0.04     | 3.2      | 23       | 0.40    | mg/kg            | <0.5         | <0.5           | <0.5         | <0.5           | <0.5           | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Benzo(a)pyrene (TCLP)      | 10  | 650    |           | 0.04     | 2600     |          | 0.10    | ng/L<br>mg/kg    |              |                |              |                |                |              |              |              |              |              |
| C8 - C9 Flaction           | 10  | 030    |           |          | 2000     |          |         | mg/kg            | <10          | <10            | <10          | <10            | <10            | <10          | <10          | <10          | <10          | <10          |
| C10 - C14 Flaction         | 100 |        |           |          |          |          |         | mg/kg            | <00          | <00            | 470          | <00            | <00            | 250          | <00          | 4790         | <00<br>4610  | <00          |
| C13 - C28 Flaction         | 100 |        |           |          |          |          |         | mg/kg            | 1930         | <100           | 470          | <100           | <100           | 2000         | <100         | 4760         | 4010         | <100         |
| C10 - C36 Fraction (sum)*  | 50  | 10000  |           |          | 40000    |          |         | mg/kg            | 4290         | <100           | 1220         | <100           | <100           | 5570         | 160          | 2990         | 2940         | <100         |
| C10 - C36 Fraction (sum)** | 50  | 10000  |           |          | 40000    |          |         | mg/kg            | 6290         | <250           | 1380         | <250           | <250           | 5620         | 310          | 7820         | 7500         | <250         |
| C6 - C10 Fraction          | 10  |        |           | -        |          |          |         | mg/kg            | <10          | <230           | <10          | <10            | <10            | <10          | <10          | <10          | <10          | <10          |
| F1                         | 10  |        |           | -        |          |          |         | mg/kg            | <10          | <10            | <10          | <10            | <10            | <10          | <10          | <10          | <10          | <10          |
| >C10 - C16 Fraction        | 50  |        |           |          |          |          |         | ma/ka            | 110          | <50            | <50          | <50            | <50            | <50          | <50          | 190          | 210          | <50          |
| >C16 - C34 Fraction        | 100 |        |           |          |          |          |         | ma/ka            | 4860         | <100           | 1090         | <100           | <100           | 4820         | 140          | 6860         | 6610         | <100         |
| >C34 - C40 Fraction        | 100 |        |           |          |          |          |         | ma/ka            | 5660         | <100           | 580          | <100           | <100           | 1720         | 180          | 1720         | 1760         | <100         |
| >C10 - C40 Fraction (sum)  | 50  |        |           |          |          |          |         | mg/kg            | 10600        | <50            | 1670         | <50            | <50            | 6540         | 320          | 8770         | 8580         | <50          |
| F2                         | 50  |        |           |          |          |          |         | ma/ka            | 110          | <50            | <50          | <50            | <50            | <50          | <50          | 190          | 210          | <50          |
| Benzene                    | 0.2 | 10     |           |          | 40       |          |         | ma/ka            | <0.2         | <0.2           | <0.2         | <0.2           | <0.2           | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Toluene                    | 0.5 | 288    |           |          | 1152     |          |         | ma/ka            | <0.5         | <0.5           | <0.5         | <0.5           | <0.5           | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Ethylbenzene               | 0.5 | 600    |           |          | 2400     |          |         | ma/ka            | <0.5         | <0.5           | <0.5         | <0.5           | <0.5           | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| meta- & para-Xylene        | 0.5 |        |           |          |          |          |         | ma/ka            | <0.5         | <0.5           | <0.5         | <0.5           | <0.5           | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| ortho-Xvlene               | 0.5 |        |           |          | -        |          |         | ma/ka            | <0.5         | <0.5           | <0.5         | <0.5           | <0.5           | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Total Xylenes              | 0.5 | 1000   |           |          | 4000     |          |         | ma/ka            | <0.5         | <0.5           | <0.5         | <0.5           | <0.5           | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Sum of BTEX                | 0.2 |        |           |          |          |          |         | ma/ka            | <0.2         | <0.2           | <0.2         | <0.2           | <0.2           | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Naphthalene                | 1   |        |           |          |          |          |         | ma/ka            | <1           | <1             | <1           | <1             | <1             | <1           | <1           | <1           | <1           | <1           |

CT - Contaminant Threshold SCC - Specific Contaminitant Concentration TCLP - Toxicity Characteristic Leaching Procedure GSW - General Sold Waste SW(A) - Special Waste Asbestos RSW - Restricted Solid Waste F1 C6 - C10 Fraction minus BTEX F2 - C10 - C16 Fraction minus Naphthalene P = Primary Sample \* 0 X LOR in sum of fractions CT1 - CT for General Solid Waste (with no TCLP) CT2 - CT for Restricted Solid Waste (with no TCLP) SCC1 - SCC for General Solid Waste SCC (with TCLP analysis) SCC2 - SCC for Restricted Solid Waste SCC (with TCLP analysis) TCLP1 - TCLP for General Solid Waste <= less than laboratory limit of reporting (LOR) Am - amosite Ch - chrysotile FD = Field duplicate

|                            |         |        |           |         |          |          |         |                  | Area B       | Area B       | Area B       | Area B       | Area B       | Area B       | Area B      | Area B       | Area B       | Area C       |
|----------------------------|---------|--------|-----------|---------|----------|----------|---------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|
|                            |         | 1000   |           |         | 10015101 |          |         | Sample ID        | B033 0.0-0.2 | B033 0.5-0.6 | B034 0.0-0.2 | B034 0.5-0.6 | B035 0.0-0.2 | B035 0.5-0.6 | QC151       | B036 0.0-0.2 | B036 0.5-0.6 | C011 0.0-0.2 |
|                            |         | NSW EF | PA (2014) | WASTECL | ASSIFICA | TION GUI | DELINES | Sample Date      | 15/03/2016   | 15/03/2016   | 15/03/2016   | 15/03/2016   | 15/03/2016   | 15/03/2016   | 16/03/2016  | 15/03/2016   | 15/03/2016   | 16/03/2016   |
|                            |         |        |           |         |          |          |         | Sample Type      | Р            | Р            | P            | Р            | P            | P            | FD          | P            | P            | P            |
| Parameter                  | LOR     | CT1    | SCC1      | TCI P1  | CT2      | SCC2     | TCL P2  | Lab. Sample Ref. | ES1606083013 | ES1606083014 | ES1606083011 | ES1606083012 | ES1606083009 | ES1606083010 | S16-Ma18366 | ES1606083007 | ES1606083008 | ES1606083034 |
|                            |         | CII    | 0001      | 10211   | 012      | 0002     | 10212   | Sample           |              |              |              |              |              |              |             |              |              |              |
|                            |         |        |           |         |          |          |         | Classification   | GSW          | GSW          | GSW          | GSW          | GSW          | GSW          | GSW         | SW(A)/GSW    | SW(A)/GSW    | Hazardous    |
|                            |         | mg/kg  | mg/kg     | mg/L    | mg/kg    | mg/kg    | mg/L    | Units            |              |              |              |              |              |              |             |              |              |              |
| Moisture Content           | 1       |        |           |         |          |          |         | %                | 22.9         | 18.9         | 12.2         | 16           | 13.5         | 8.6<br>No    | 23          | 30           | 20.8         | <1.0         |
| Aspestos Detected          | 0.1     |        |           |         |          |          |         | g/кg             | INO          | INO          | NO           | INO          | NO           | INO          |             | res          | res          | NO           |
| Aspestos Type              | 0       |        |           |         |          |          |         |                  | -            | - 655        | -            | -            | -            | -            |             | Am<br>507    | Am<br>546    |              |
| Sample weight (dry)        | 0       |        |           | -       | 400      |          |         | y .              | 437          | 000          | 300          | 440          | 500          | 421          |             | 507          | 546          | 555          |
| Rarium                     | 5<br>10 | 100    |           |         | 400      |          |         | mg/kg            | <0           | <0           | <0           | <0           | <0           | <0           | < 2         | 70           | <0           | C>           |
| Bandlium                   | 10      | 20     |           |         | 80       |          |         | mg/kg            | 10           | <10          | 20           | <10          | 20           | <10          | - 2         | -1           | <10          | -1           |
| Beron                      | 50      | 20     |           | -       |          |          |         | mg/kg            | <50          | <50          | <50          | <50          | <50          | <50          | < 10        | <50          | <50          | <50          |
| Cadmium                    | 1       | 20     |           | -       | 80       |          |         | mg/kg            | <00          | <30          | <00          | <00          | <00          | <1           | < 0.4       | <00          | <00          | <1           |
| Chromium                   | 2       | 100    |           |         | 400      |          |         | mg/kg            | 9            | <2           | 12           | 6            | 20           | <2           | < 1         | 26           | 4            | 54           |
| Chromium (TCLP)            | 2       | 100    | 1900      | 5       | 400      | 7600     | 20      | mg/kg            | 5            | ~2           | 12           | 0            | 20           | ~2           | -           | 20           | 4            |              |
| Cobalt                     | 2       |        | 1300      |         |          | 7000     | 20      | mg/kg            | -2           | -2           | 3            | -2           | 7            | -2           | < 5         | 22           | ~2           | 9            |
| Copper                     | 5       |        |           |         |          |          |         | mg/kg            | 34           | <5           | 29           | <5           | 118          | <5           | < 5         | 92           | 11           | 230          |
| Lead                       | 5       | 100    | 1500      |         | 400      | 6000     |         | mg/kg            | 37           | <5           | 47           | <5           | 234          | <5           | < 5         | 83           | 13           | 220          |
| Lead (TCLP)                | Ŭ       |        |           | 5       | 100      |          | 20      | ma/l             |              |              |              |              | <01          |              | -           |              |              |              |
| Manganese                  | 5       |        |           |         |          |          |         | ma/ka            | 48           | <5           | 83           | <5           | 138          | <5           | < 5         | 365          | 31           | 66           |
| Nickel                     | 2       | 40     | 1050      |         | 160      | 4200     |         | ma/ka            | 10           | <2           | 12           | <2           | 19           | <2           | < 5         | 58           | 5            | 14           |
| Nickel (TCLP)              | _       |        |           | 2       |          |          | 8       | ma/L             |              |              |              |              |              |              | -           | <0.1         | -            | -            |
| Selenium                   | 5       | 20     |           |         | 80       |          |         | ma/ka            | <5           | <5           | <5           | <5           | <5           | <5           | < 2         | <5           | <5           | <5           |
| Vanadium                   | 5       |        |           |         |          |          |         | mg/kg            | 10           | <5           | 9            | <5           | 17           | <5           |             | 38           | 6            | 9            |
| Zinc                       | 5       |        |           |         |          |          |         | mg/kg            | 155          | 14           | 772          | 32           | 1930         | <5           | < 5         | 1830         | 148          | 1800         |
| Mercury                    | 0.1     | 4      | 50        |         | 16       | 200      |         | mg/kg            | 0.2          | <0.1         | 0.2          | <0.1         | 0.3          | <0.1         | < 0.05      | 0.6          | <0.1         | <0.1         |
| Mercury (TCLP)             |         |        |           | 0.2     |          |          | 0.8     | mg/L             |              |              |              |              |              |              |             |              |              |              |
| Benzo(a)pyrene             | 0.5     | 0.8    | 10        |         | 3.2      | 23       |         | mg/kg            | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | < 0.5       | <0.5         | <0.5         | <0.5         |
| Benzo(a)pyrene (TCLP)      |         |        |           | 0.04    |          |          | 0.16    | mg/L             |              |              |              |              |              |              |             |              |              |              |
| C6 - C9 Fraction           | 10      | 650    |           |         | 2600     |          |         | mg/kg            | <10          | <10          | <10          | <10          | <10          | <10          | < 20        | <10          | <10          | <10          |
| C10 - C14 Fraction         | 50      |        |           |         |          |          |         | mg/kg            | <50          | <50          | <50          | <50          | <50          | <50          | < 20        | <50          | <50          | <50          |
| C15 - C28 Fraction         | 100     |        |           |         |          |          |         | mg/kg            | <100         | <100         | <100         | 240          | <100         | <100         | < 50        | <100         | <100         | 30800        |
| C29 - C36 Fraction         | 100     |        |           |         |          |          |         | mg/kg            | <100         | <100         | <100         | 260          | <100         | <100         | 58          | <100         | <100         | 35000        |
| C10 - C36 Fraction (sum)*  | 50      | 10000  |           |         | 40000    |          |         | mg/kg            | <50          | <50          | <50          | 500          | <50          | <50          | 58          | <50          | <50          | 65800        |
| C10 - C36 Fraction (sum)** |         | 10000  |           |         | 40000    |          |         | mg/kg            | 250          | 250          | <250         | 550          | <250         | <250         | 58          | <250         | <250         | 65850        |
| C6 - C10 Fraction          | 10      |        |           |         |          |          |         | mg/kg            | <10          | <10          | <10          | <10          | <10          | <10          | < 20        | <10          | <10          | <10          |
| F1                         | 10      |        |           |         |          |          |         | mg/kg            | <10          | <10          | <10          | <10          | <10          | <10          | < 20        | <10          | <10          | <10          |
| >C10 - C16 Fraction        | 50      |        |           |         |          |          |         | mg/kg            | <50          | <50          | <50          | 240          | <50          | <50          | < 50        | <50          | <50          | 270          |
| >C16 - C34 Fraction        | 100     |        |           | -       |          |          |         | mg/kg            | <100         | <100         | <100         | 320          | <100         | <100         | < 100       | <100         | <100         | 59300        |
| >C34 - C40 Fraction        | 100     |        |           | -       |          |          |         | mg/kg            | <100         | <100         | <100         | 380          | <100         | <100         | 170         | <100         | <100         | 19600        |
| 2010 - 040 Fraction (SUM)  | 50      |        |           | -       |          |          |         | mg/kg            | <00          | <00          | <00          | 940          | <00          | <00          |             | <00          | <50          | 270          |
| F2<br>Ronzono              | 0.2     | 10     |           | -       | 40       |          |         | mg/kg            | <0.2         | <0.2         | <0.2         | 240          | <00          | <0.2         | < 00        | <00          | <0.2         | 210          |
| Toluene                    | 0.2     | 288    |           |         | 1152     |          |         | mg/kg            | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | < 0.1       | <0.2         | <0.2         | <0.2         |
| Ethylbenzene               | 0.5     | 600    |           |         | 2400     |          |         | ma/ka            | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | < 0.1       | <0.5         | <0.5         | <0.5         |
| meta- & para-Xylene        | 0.5     |        |           |         |          |          |         | ma/ka            | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | < 0.2       | <0.5         | <0.5         | <0.5         |
| ortho-Xylene               | 0.5     |        |           |         |          |          |         | ma/ka            | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | < 0.1       | <0.5         | <0.5         | <0.5         |
| Total Xylenes              | 0.5     | 1000   |           |         | 4000     |          |         | ma/ka            | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         | < 0.3       | <0.5         | <0.5         | <0.5         |
| Sum of BTEX                | 0.2     |        |           |         |          |          |         | ma/ka            | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |             | <0.2         | <0.2         | <0.2         |
| Naphthalene                | 1       |        |           |         |          |          |         | ma/ka            | <1           | <1           | <1           | <1           | <1           | <1           |             | <1           | <1           | <1           |

CT - Contaminant Threshold SCC - Specific Contaminitant Concentration TCLP - Toxicity Characteristic Leaching Procedure GSW - General Sold Waste SW(A) - Special Waste Asbestos RSW - Restricted Solid Waste F1 C6 - C10 Fraction minus BTEX F2 - C10 - C16 Fraction minus Naphthalene P = Primary Sample \* 0 X LOR in sum of fractions CT1 - CT for General Solid Waste (with no TCLP) CT2 - CT for Restricted Solid Waste (with no TCLP) SCC1 - SCC for General Solid Waste SCC (with TCLP analysis) SCC2 - SCC for General Solid Waste TCLP2 - TCLP for Restricted Solid Waste < = less than laboratory limit of reporting (LOR) Am - amoste D = Field duplicate

|                            |     |        |             |          |          |          |         |                  | Area C       |
|----------------------------|-----|--------|-------------|----------|----------|----------|---------|------------------|--------------|
|                            |     | -      |             |          |          |          |         | Sample ID        | C012 0.0-0.2 |
|                            |     | NSW EF | PA (2014) 1 | WASTE CL | ASSIFICA | TION GUI | DELINES | Sample Date      | 16/03/2016   |
|                            |     |        |             |          |          |          |         | Sample Type      | Р            |
| Parameter                  | LOR |        |             |          |          |          |         | Lab. Sample Ref. | ES1606083035 |
|                            |     | CT1    | SCC1        | TCLP1    | CT2      | SCC2     | TCLP2   | Sample           |              |
|                            |     |        |             |          |          |          |         | Classification   | GSW          |
|                            |     | ma/ka  | ma/ka       | ma/L     | ma/ka    | ma/ka    | ma/L    | Units            |              |
| Moisture Content           | 1   |        |             | - Ŭ      |          |          | Ŭ       | %                | 17.1         |
| Asbestos Detected          | 0.1 |        |             |          |          |          |         | g/kg             | No           |
| Asbestos Type              |     |        |             |          |          |          |         | -                |              |
| Sample weight (drv)        | 0   |        |             |          |          |          |         | q                | 532          |
| Arsenic                    | 5   | 100    |             |          | 400      |          |         | ma/ka            | <5           |
| Barium                     | 10  |        |             |          |          |          |         | ma/ka            | 10           |
| Beryllium                  | 1   | 20     |             |          | 80       |          |         | ma/ka            | <1           |
| Boron                      | 50  |        |             |          |          |          |         | ma/ka            | <50          |
| Cadmium                    | 1   | 20     |             |          | 80       |          |         | ma/ka            | <1           |
| Chromium                   | 2   | 100    |             |          | 400      |          |         | ma/ka            | 11           |
| Chromium (TCLP)            |     |        | 1900        | 5        |          | 7600     | 20      | ma/L             |              |
| Cobalt                     | 2   |        |             |          |          |          |         | ma/ka            | 2            |
| Copper                     | 5   |        |             |          |          |          |         | ma/ka            | 23           |
| Lead                       | 5   | 100    | 1500        |          | 400      | 6000     |         | ma/ka            | 27           |
| Lead (TCLP)                | -   |        |             | 5        |          |          | 20      | ma/l             |              |
| Manganese                  | 5   |        |             |          |          |          |         | ma/ka            | 40           |
| Nickel                     | 2   | 40     | 1050        |          | 160      | 4200     |         | mg/kg            | 4            |
| Nickel (TCLP)              | -   | 10     |             | 2        |          |          | 8       | ma/L             |              |
| Selenium                   | 5   | 20     |             |          | 80       |          |         | ma/ka            | <5           |
| Vanadium                   | 5   |        |             |          |          |          |         | mg/kg            | <5           |
| Zinc                       | 5   |        |             |          |          |          |         | ma/ka            | 303          |
| Mercury                    | 0.1 | 4      | 50          |          | 16       | 200      |         | ma/ka            | <0.1         |
| Mercury (TCLP)             | ÷   |        |             | 0.2      |          |          | 0.8     | ma/L             |              |
| Benzo(a)pyrene             | 0.5 | 0.8    | 10          |          | 3.2      | 23       |         | ma/ka            | <0.5         |
| Benzo(a)pyrene (TCLP)      | 0.0 | 0.0    |             | 0.04     |          |          | 0.16    | ma/L             |              |
| C6 - C9 Fraction           | 10  | 650    |             |          | 2600     |          |         | ma/ka            | <10          |
| C10 - C14 Fraction         | 50  |        |             |          |          |          |         | ma/ka            | <50          |
| C15 - C28 Fraction         | 100 |        |             |          |          |          |         | ma/ka            | 1960         |
| C29 - C36 Fraction         | 100 |        |             |          |          |          |         | ma/ka            | 3260         |
| C10 - C36 Fraction (sum)*  | 50  | 10000  |             |          | 40000    |          |         | ma/ka            | 5220         |
| C10 - C36 Fraction (sum)** |     | 10000  |             |          | 40000    |          |         | ma/ka            | 5270         |
| C6 - C10 Fraction          | 10  |        |             |          |          |          |         | mg/kg            | <10          |
| F1                         | 10  |        |             |          |          |          |         | ma/ka            | <10          |
| >C10 - C16 Fraction        | 50  |        |             |          |          |          |         | mg/kg            | <50          |
| >C16 - C34 Fraction        | 100 |        |             |          |          |          |         | ma/ka            | 4430         |
| >C34 - C40 Fraction        | 100 |        |             |          |          |          |         | mg/kg            | 1700         |
| >C10 - C40 Fraction (sum)  | 50  |        |             |          |          |          |         | ma/ka            | 6130         |
| F2                         | 50  |        |             |          |          |          |         | mg/kg            | <50          |
| Benzene                    | 0.2 | 10     |             |          | 40       |          |         | mg/kg            | <0.2         |
| Toluene                    | 0.5 | 288    |             |          | 1152     |          |         | mg/kg            | <0.5         |
| Ethylbenzene               | 0.5 | 600    |             |          | 2400     |          |         | mg/kg            | <0.5         |
| meta- & para-Xylene        | 0.5 |        |             |          |          |          |         | mg/kg            | <0.5         |
| ortho-Xylene               | 0.5 |        |             |          |          |          |         | mg/kg            | <0.5         |
| Total Xylenes              | 0.5 | 1000   |             |          | 4000     |          |         | mg/kg            | <0.5         |
| Sum of BTEX                | 0.2 |        |             |          |          |          |         | mg/kg            | <0.2         |
| Naphthalene                | 1   |        |             |          |          |          |         | mg/kg            | <1           |

CT - Contaminant Threshold SCC - Specific Contaminitant Concentration TCLP - Toxicity Characteristic Leaching Procedure GSW - General Sold Waste SW(A) - Special Waste Asbestos RSW - Restricted Solid Waste F1 C6 - C10 Fraction minus BTEX F2 - C10 - C16 Fraction minus Naphthalene P = Primary Sample \* 0 X LOR in sum of fractions CT1 - CT for General Solid Waste (with no TCLP) CT2 - CT for Restricted Solid Waste (with no TCLP) SCC1 - SCC for General Solid Waste SCC (with TCLP analysis) SCC2 - SCC for Restricted Solid Waste TCLP1 - TCLP for General Solid Waste < = less than laboratory limit of reporting (LOR) Am - amosite Ch - chrysotlie FD = Field duplicate

|                                                            |        | Sample ID        |              | ES1607647010        | ES1607647001        | ES1607647002        | ES1607647003       | ES1607647004         | ES1607647005         |
|------------------------------------------------------------|--------|------------------|--------------|---------------------|---------------------|---------------------|--------------------|----------------------|----------------------|
|                                                            |        | Sample Date      |              | 7/04/2016           | 7/04/2016           | 7/04/2016           | 7/04/2016          | 7/04/2016            | 7/04/2016            |
| Parameter                                                  |        | Lab. Sample Ref. | (2013) HOL D | A006.5_0-0.2        | B001_0.0-0.2        | B003.5_0.0-0.2      | B007.5_0-0.2       | B009.5_0-0.2         | B010.5_0-0.2         |
| Falalleter                                                 | LOK    | Unit             |              | Result              | Result              | Result              | Result             | Result               | Result               |
| Asbestos Detected                                          | 0.1    | g/kg             |              | Yes                 | Yes                 | Yes                 | Yes                | No                   | No                   |
| Asbestos Type                                              | -      |                  |              | Am                  | Am                  | Ch                  | Am                 | -                    | -                    |
| Sample weight (dry)                                        | 0.01   | g                |              | 2470                | 2100                | 2760                | 2850               | 2000                 | 3240                 |
| Asbestos Containing Material (as 15% Asbestos in ACM >7mm) | 0.01   | % (w/w)          | 0.05         | <0.01               | <0.01               | <0.01               | <0.01              | <0.01                | <0.01                |
| Friable Asbestos                                           | 0.0004 | g                |              | 0.21                | <0.0004             | 0.144               | <0.0004            | <0.0004              | < 0.0004             |
| Friable Asbestos (as Asbestos in Soil)                     | 0.001  | % (w/w)          | 0.001        | 0.008               | <0.001              | 0.005               | <0.001             | <0.001               | <0.001               |
| Weight Used for % Calculation                              | 0.0001 | kg               |              | 2.47                | 2.1                 | 2.76                | 2.85               | 2                    | 3.24                 |
| Free Fibres                                                | 5      | Fibres           |              | No                  | No                  | No                  | No                 | No                   | No                   |
| Asbestos Containing Material                               | 0.1    | g                |              | <0.1                | <0.1                | <0.1                | <0.1               | <0.1                 | <0.1                 |
| Description                                                |        |                  |              | Mid brown sandy     | Mid brown sandy     | Mid brown sandy     | Mid brown sandy    | Mid brown clay soil. | Mid brown clay soil. |
|                                                            |        |                  |              | soil with several   | soil with one loose | soil with one piece | soil with two      |                      |                      |
|                                                            |        |                  |              | pieces of friable   | bundle of friable   | of friable asbestos | bundles of friable |                      |                      |
|                                                            |        |                  |              | asbestos insulation | asbestos fibres     | fibre board approx  | asbestos fibres    |                      |                      |
|                                                            |        |                  |              | material approx 5 x | approx 2 x 1 x 0.5  | 25 x 15 x 1 mm.     | approx 3 x 1 x 1   |                      |                      |
|                                                            |        |                  |              | 4 x 2 mm with       | mm.                 |                     | mm.                |                      |                      |
|                                                            |        |                  |              | several loose       |                     |                     |                    |                      |                      |
|                                                            |        |                  |              | bundles of friable  |                     |                     |                    |                      |                      |
|                                                            |        |                  |              | asbestos fibres     |                     |                     |                    |                      |                      |
|                                                            |        |                  |              | approx 2 x 1 x 0.5  |                     |                     |                    |                      |                      |
|                                                            |        |                  |              | mm.                 |                     |                     |                    |                      |                      |
|                                                            |        |                  |              |                     |                     |                     |                    |                      |                      |

AM - amosite asbestos

Ch - crysotile asbestos

LOR - laboratory limit of reporting

ASC NEPM (2013) - National Environment Protection (Assessment of Contaminated Land) Measure (NEPM) 1999,

National Environment Protection Council Amendment 2013. Schedule B1, Guideline on Investigation Levels for Soil and Groundwater.

HSL D - Health Screening Level for Commerical/Industrial land use

|                                                            |        | Sample ID        | ES1607647011                                                                                                                                                                                  | ES1607647012             | ES1607647013                                                                                               | ES1607647009             | ES1607647008                                | ES1607647006                                                                                     | ES1607647007                                                                                                                                                                                             |
|------------------------------------------------------------|--------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            |        | Sample Date      | 7/04/2016                                                                                                                                                                                     | 7/04/2016                | 7/04/2016                                                                                                  | 7/04/2016                | 7/04/2016                                   | 7/04/2016                                                                                        | 7/04/2016                                                                                                                                                                                                |
| Parameter                                                  |        | Lab. Sample Ref. | A013.5_0-0.2                                                                                                                                                                                  | A013.5_0.4-0.5           | A014.5_0.4-0.5                                                                                             | B016_0-0.2               | B032_0-0.2                                  | B036_0-0.2                                                                                       | B036-0.5-0.6                                                                                                                                                                                             |
| Falailietei                                                | LOK    | Unit             | Result                                                                                                                                                                                        | Result                   | Result                                                                                                     | Result                   | Result                                      | Result                                                                                           | Result                                                                                                                                                                                                   |
| Asbestos Detected                                          | 0.1    | g/kg             | Yes                                                                                                                                                                                           | No                       | Yes                                                                                                        | No                       | No                                          | Yes                                                                                              | Yes                                                                                                                                                                                                      |
| Asbestos Type                                              |        |                  | Ch + Am                                                                                                                                                                                       | -                        | Am                                                                                                         | -                        | -                                           | Am                                                                                               | Ch + Am                                                                                                                                                                                                  |
| Sample weight (dry)                                        | 0.01   | g                | 2330                                                                                                                                                                                          | 2940                     | 3280                                                                                                       | 2450                     | 1910                                        | 2690                                                                                             | 2400                                                                                                                                                                                                     |
| Asbestos Containing Material (as 15% Asbestos in ACM >7mm) | 0.01   | % (w/w)          | <0.01                                                                                                                                                                                         | <0.01                    | <0.01                                                                                                      | <0.01                    | <0.01                                       | <0.01                                                                                            | 0.11                                                                                                                                                                                                     |
| Friable Asbestos                                           | 0.0004 | g                | 0.284                                                                                                                                                                                         | <0.0004                  | 0.0033                                                                                                     | <0.0004                  | <0.0004                                     | < 0.0004                                                                                         | 0.0035                                                                                                                                                                                                   |
| Friable Asbestos (as Asbestos in Soil)                     | 0.001  | % (w/w)          | 0.012                                                                                                                                                                                         | <0.001                   | <0.001                                                                                                     | <0.001                   | <0.001                                      | <0.001                                                                                           | <0.001                                                                                                                                                                                                   |
| Weight Used for % Calculation                              | 0.0001 | kg               | 2.33                                                                                                                                                                                          | 2.94                     | 3.28                                                                                                       | 2.45                     | 1.91                                        | 2.69                                                                                             | 2.4                                                                                                                                                                                                      |
| Free Fibres                                                | 5      | Fibres           | No                                                                                                                                                                                            | No                       | No                                                                                                         | No                       | No                                          | No                                                                                               | No                                                                                                                                                                                                       |
| Asbestos Containing Material                               | 0.1    | g                | <0.1                                                                                                                                                                                          | <0.1                     | <0.1                                                                                                       | <0.1                     | <0.1                                        | <0.1                                                                                             | 17.8                                                                                                                                                                                                     |
| Description                                                |        |                  | Mid brown sandy<br>soil with several<br>pieces of friable<br>asbestos insulation<br>approx 25 x 20 x 2<br>mm plus several<br>bundles of friable<br>asbestos fibres<br>approx 3 x 1 x 1<br>mm. | Mid brown sandy<br>soil. | Pale brown sandy<br>soil with one loose<br>bundle of friable<br>asbestos fibres<br>approx 3 x 2 x 1<br>mm. | Mid brown sandy<br>soil. | Mid brown sandy<br>soil with grey<br>rocks. | Mid brown sandy<br>soil with one bundle<br>of friable asbestos<br>fibres approx 3 x 1<br>x 1 mm. | Mid brown sandy<br>soil with two pieces<br>of bonded asbestos<br>cement sheeting<br>approx 60 x 30 x 5<br>mm plus<br>several loose<br>bundles of friable<br>asbestos fibres<br>approx 3 x 1 x 0.5<br>mm. |

AM - amosite asbestos

Ch - crysotile asbestos

LOR - laboratory limit of reporting

ASC NEPM (2013) - National Environment Protection (Assessment of Contaminated Land) Measure (N

National Environment Protection Council Amendment 2013. Schedule B1, Guideline on Investigation Le

Groundwater.

HSL D - Health Screening Level for Commerical/Industrial land use

|                                            |      | Sample ID        | A005.5_0.0-0.2 | QC155              | RPD | A013.5_0.0-0.2 | QC157              | RPD | A014.5_0.4-0.5 | QC158              | RPD | B010.5_0.0-0.2 | QC150              | RPD |
|--------------------------------------------|------|------------------|----------------|--------------------|-----|----------------|--------------------|-----|----------------|--------------------|-----|----------------|--------------------|-----|
|                                            |      | Sample Date      | 16/03/2016     | 16/03/2016         |     | 16/03/2016     | 16/03/2016         |     | 16/03/2016     | 16/03/2016         |     | 14/03/2016     | 14/03/2016         |     |
| Parameter                                  | LOR  | Sample Type      | Inter-la       | boratory Duplicate |     | Intra-la       | boratory Duplicate |     | Inter-lai      | ooratory Duplicate |     | Intra-la       | ooratory Duplicate |     |
|                                            |      | Lab. Sample Ref. | ES1606083026   | S16-Ma18367        |     | ES1606083031   | ES1606083041       |     | ES1606083033   | S16-Ma18368        |     | ES1606083005   | ES1606083036       |     |
|                                            |      | Unit             | Result         | Result             |     | Result         | Result             |     | Result         | Result             |     | Result         | Result             |     |
| Moisture Content (dried @ 103°C)           | 1    | %                | <1.0           | < 1                | 0   | 27.5           | 43.1               | 44  | 19.6           | 21                 | 7   | 23.9           | 24.3               | 2   |
| Asbestos Detected                          | 0.1  | g/kg             | No             |                    |     | Yes            |                    |     | Yes            |                    |     | Yes            |                    |     |
| Asbestos Type                              |      |                  | -              |                    |     | Am             |                    |     | Am + Cr        |                    |     | Am             |                    |     |
| Sample weight (dry)                        | 0.01 | g                | 684            |                    |     | 287            |                    |     | 832            |                    |     | 185            |                    |     |
| Arsenic                                    | 5    | mg/kg            | 6              | 6                  | 0   | 9              | 11                 | 20  | <5             | 8.8                | 55  | 10             | 8                  | 22  |
| Barium                                     | 10   | mg/kg            | <10            |                    |     | 20             | 40                 | 67  | <10            |                    |     | 70             | 90                 | 25  |
| Beryllium                                  | 1    | mg/kg            | <1             | < 2                | 67  | <1             | <1                 | 0   | <1             | < 2                |     | <1             | <1                 | 0   |
| Boron                                      | 50   | mg/kg            | <50            | < 10               | 133 | <50            | <50                | 0   | <50            | < 10               |     | <50            | <50                | 0   |
| Cadmium                                    | 1    | mg/kg            | <1             | < 0.4              | 86  | <1             | <1                 | 0   | <1             | < 0.4              |     | 1              | <1                 | 0   |
| Chromium                                   | 2    | mg/kg            | 36             | < 1                | 189 | 45             | 53                 | 16  | 4              | < 1                |     | 73             | 70                 | 4   |
| Chromium (TCLP)                            |      | mg/L             |                |                    |     |                |                    |     |                |                    |     |                |                    |     |
| Cobalt                                     | 2    | mg/kg            | 4              | < 5                | 22  | 3              | 5                  | 50  | <2             | < 5                | 86  | 14             | 11                 | 24  |
| Copper                                     | 5    | mg/kg            | 94             | 84                 | 11  | 34             | 46                 | 30  | <5             | 8.3                | 50  | 230            | 157                | 38  |
| Lead                                       | 5    | mg/kg            | 160            | 140                | 13  | 47             | 58                 | 21  | 6              | 15                 | 86  | 249            | 124                | 67  |
| Lead (TCLP)                                |      | mg/L             | 0.1            |                    |     |                | -                  |     |                |                    |     | 0.1            |                    |     |
| Manganese                                  | 5    | mg/kg            | 29             | 28                 | 4   | 70             | 132                | 61  | 6              | 12                 | 67  | 172            | 164                | 5   |
| Nickel                                     | 2    | mg/kg            | 5              | 5.6                | 11  | 12             | 24                 | 67  | <2             | < 5                | 86  | 53             | 40                 | 28  |
| Nickel (TCLP)                              |      | mg/L             |                |                    |     |                |                    |     |                |                    |     | <0.1           |                    |     |
| Selenium                                   | 5    | mg/kg            | <5             | < 2                | 86  | <5             | <5                 | 0   | <5             | < 2                | 86  | <5             | <5                 | 0   |
| Vanadium                                   | 5    | mg/kg            | <5             |                    |     | 10             | 14                 | 33  | <5             |                    |     | 27             | 29                 | 7   |
| Zinc                                       | 5    | mg/kg            | 713            | 700                | 2   | 415            | 581                | 33  | 35             | 130                | 115 | 4080           | 2580               | 45  |
| Mercury                                    | 0.1  | mg/kg            | <0.1           | 0.13               | 26  | 0.5            | 0.7                | 33  | 0.1            | 0.3                | 100 | 17.6           | 14.7               | 18  |
| Mercury (TCLP)                             |      | mg/L             |                |                    |     |                |                    |     |                |                    |     | <0.001         |                    |     |
| Benzo(a)pyrene                             | 0.5  | mg/kg            | <0.5           | < 0.5              | 0   | <4.0           | <4.0               |     | <0.5           | < 0.5              | 0   | <0.5           | <4.0               |     |
| Benzo(a)pyrene (TCLP)                      |      | mg/L             |                |                    |     |                | -                  |     |                |                    |     |                |                    |     |
| C6 - C9 Fraction                           | 10   | mg/kg            | <10            | < 20               |     | <10            | <10                | 0   | <10            | < 20               | 67  | <10            | <10                | 0   |
| C10 - C14 Fraction                         | 50   | mg/kg            | <50            | < 20               |     | 630            | <50                | 171 | <50            | 65                 | 26  | 1660           | <50                | 188 |
| C15 - C28 Fraction                         | 100  | mg/kg            | 2480           | 2900               | 16  | 61000          | 120000             | 65  | 750            | 1200               | 46  | 66700          | 107000             | 46  |
| C29 - C36 Fraction                         | 100  | mg/kg            | 260            | 390                | 40  | 15800          | 28400              | 57  | <100           | < 50               | 67  | 35300          | 41300              | 16  |
| C10 - C36 Fraction (sum)                   | 50   | mg/kg            | 2740           | 3300               | 19  | 77400          | 148000             | 63  | 750            | 1300               | 54  | 104000         | 148000             | 35  |
| C6 - C10 Fraction                          | 10   | mg/kg            | <10            | < 20               |     | <10            | <10                | 0   | <10            | < 20               | 67  | <10            | <10                | 0   |
| C6 - C10 Fraction minus BTEX (F1)          | 10   | mg/kg            | <10            | < 20               |     | <10            | <10                | 0   | <10            | < 20               | 67  | <10            | <10                | 0   |
| >C10 - C16 Fraction                        | 50   | mg/kg            | 100            | < 50               | 67  | 2440           | 3200               | 27  | 280            | 240                | 15  | 5750           | 14200              | 85  |
| >C16 - C34 Fraction                        | 100  | mg/kg            | 2590           | 3300               | 24  | 72100          | 140000             | 64  | 530            | 1000               | 61  | 91700          | 129000             | 34  |
| >C34 - C40 Fraction                        | 100  | mg/kg            | <100           | 200                | 67  | 9120           | 16400              | 57  | <100           | < 100              | 0   | 16000          | 19800              | 21  |
| >C10 - C40 Fraction (sum)                  | 50   | mg/kg            | 2690           |                    |     | 83700          | 160000             | 63  | 810            |                    |     | 113000         | 163000             | 36  |
| >C10 - C16 Fraction minus Naphthalene (F2) | 50   | mg/kg            | 100            | < 50               | 67  | 2440           | 3200               | 27  | 280            | 240                | 15  | 5750           | 14200              | 85  |
| Benzene                                    | 0.2  | mg/kg            | <0.2           | < 0.1              |     | <0.2           | <0.2               | 0   | <0.2           | < 0.1              |     | <0.2           | <0.2               | 0   |
| Toluene                                    | 0.5  | mg/kg            | <0.5           | < 0.1              |     | <0.5           | <0.5               | 0   | <0.5           | < 0.1              |     | <0.5           | <0.5               | 0   |
| Ethylbenzene                               | 0.5  | mg/kg            | <0.5           | < 0.1              |     | <0.5           | <0.5               | 0   | <0.5           | < 0.1              |     | <0.5           | <0.5               | 0   |
| meta- & para-Xylene                        | 0.5  | mg/kg            | <0.5           | < 0.2              |     | <0.5           | <0.5               | 0   | <0.5           | < 0.2              |     | <0.5           | <0.5               | 0   |
| ortho-Xylene                               | 0.5  | mg/kg            | <0.5           | < 0.1              |     | <0.5           | <0.5               | 0   | <0.5           | < 0.1              |     | <0.5           | <0.5               | 0   |
| Total Xylenes                              | 0.5  | mg/kg            | <0.5           | < 0.3              |     | <0.5           | <0.5               | 0   | <0.5           | < 0.3              |     | <0.5           | <0.5               | 0   |
| Sum of BTEX                                | 0.2  | mg/kg            | <0.2           |                    |     | <0.2           | <0.2               | 0   | <0.2           |                    |     | <0.2           | <0.2               | 0   |
| Naphthalene                                | 1    | mg/kg            | <1             |                    |     | <1             | <1                 | 0   | <1             |                    |     | <1             | <1                 | 0   |

RPD - relative percent difference

TCLP - toxicity characteristic leaching procedure

< result less than laboratory limit of reporting (LOR)

|                                            |      | Sample ID        | B014_0.5-0.6 | QC154             | RPD | B032_0.0-0.2 | QC152              | RPD | B035_0.5-0.6 | QC151               | RPD | QC153        |
|--------------------------------------------|------|------------------|--------------|-------------------|-----|--------------|--------------------|-----|--------------|---------------------|-----|--------------|
|                                            |      | Sample Date      | 15/03/2016   | 15/03/2016        |     | 15/03/2016   | 15/03/2016         |     | 15/03/2016   | 16/03/2016          |     | 14/03/2016   |
| Parameter                                  | LOR  | Sample Type      | Intra-lab    | oratory Duplicate |     | Intra-la     | boratory Duplicate |     | Inter-la     | aboratory Duplicate |     | Trip Blank   |
|                                            |      | Lab. Sample Ref. | ES1606083024 | ES1606083039      |     | ES1606083015 | ES1606083038       |     | ES1606083010 | S16-Ma18366         |     | ES1606083037 |
|                                            |      | Unit             | Result       | Result            |     | Result       | Result             |     | Result       | Result              |     | Result       |
| Moisture Content (dried @ 103°C)           | 1    | %                | 19.3         | 19.3              | 0   | 48.5         | 45.9               | 6   | 8.6          | 23                  | 91  |              |
| Asbestos Detected                          | 0.1  | g/kg             | No           |                   |     | Yes          |                    |     | No           |                     |     |              |
| Asbestos Type                              |      |                  | -            |                   |     | Am           |                    |     | -            |                     |     |              |
| Sample weight (dry)                        | 0.01 | g                | 679          |                   | -   | 292          |                    |     | 421          |                     |     |              |
| Arsenic                                    | 5    | mg/kg            | <5           | <5                | 0   | 7            | 5                  | 33  | <5           | < 2                 |     |              |
| Barium                                     | 10   | mg/kg            | <10          | <10               | 0   | 90           | 50                 | 57  | <10          |                     |     |              |
| Beryllium                                  | 1    | mg/kg            | <1           | <1                | 0   | <1           | <1                 | 0   | <1           | < 2                 | -   |              |
| Boron                                      | 50   | mg/kg            | <50          | <50               | 0   | <50          | <50                | 0   | <50          | < 10                |     |              |
| Cadmium                                    | 1    | mg/kg            | <1           | <1                | 0   | <1           | <1                 | 0   | <1           | < 0.4               |     |              |
| Chromium                                   | 2    | mg/kg            | <2           | <2                | 0   | 45           | 37                 | 20  | <2           | < 1                 |     |              |
| Chromium (TCLP)                            |      | mg/L             |              |                   |     |              |                    |     |              |                     |     |              |
| Cobalt                                     | 2    | mg/kg            | <2           | <2                | 0   | 11           | 10                 | 10  | <2           | < 5                 |     |              |
| Copper                                     | 5    | mg/kg            | <5           | <5                | 0   | 72           | 58                 | 22  | <5           | < 5                 | 0   |              |
| Lead                                       | 5    | mg/kg            | <5           | <5                | 0   | 82           | 68                 | 19  | <5           | < 5                 | 0   |              |
| Lead (TCLP)                                |      | mg/L             |              |                   |     |              |                    |     |              |                     |     |              |
| Manganese                                  | 5    | mg/kg            | <5           | <5                | 0   | 276          | 219                | 23  | <5           | < 5                 | 0   |              |
| Nickel                                     | 2    | mg/kg            | <2           | <2                | 0   | 51           | 47                 | 8   | <2           | < 5                 |     |              |
| Nickel (TCLP)                              |      | mg/L             |              |                   |     | <0.1         |                    |     |              |                     |     |              |
| Selenium                                   | 5    | mg/kg            | <5           | <5                | 0   | <5           | <5                 | 0   | <5           | < 2                 | 86  |              |
| Vanadium                                   | 5    | mg/kg            | <5           | <5                | 0   | 34           | 26                 | 27  | <5           |                     |     |              |
| Zinc                                       | 5    | mg/kg            | 10           | 62                | 144 | 1930         | 1530               | 23  | <5           | < 5                 | 0   |              |
| Mercury                                    | 0.1  | mg/kg            | <0.1         | <0.1              | 0   | 0.4          | 0.4                | 0   | <0.1         | < 0.05              |     |              |
| Mercury (TCLP)                             |      | mg/L             |              |                   |     |              |                    |     |              |                     |     |              |
| Benzo(a)pyrene                             | 0.5  | mg/kg            | <0.5         | <0.5              | 0   | <0.5         | <0.5               | 0   | <0.5         | < 0.5               | 0   |              |
| Benzo(a)pyrene (TCLP)                      |      | mg/L             |              |                   |     |              |                    |     |              |                     |     | -            |
| C6 - C9 Fraction                           | 10   | mg/kg            | <10          | <10               | 0   | <10          | <10                | 0   | <10          | < 20                |     | <10          |
| C10 - C14 Fraction                         | 50   | mg/kg            | <50          | <50               | 0   | <50          | <50                | 0   | <50          | < 20                |     | -            |
| C15 - C28 Fraction                         | 100  | mg/kg            | 670          | 1950              | 98  | 4780         | 4610               | 4   | <100         | < 50                |     | -            |
| C29 - C36 Fraction                         | 100  | mg/kg            | 1480         | 4290              | 97  | 2990         | 2940               | 2   | <100         | 58                  |     |              |
| C10 - C36 Fraction (sum)                   | 50   | mg/kg            | 2150         | 6240              | 97  | 7770         | 7550               | 3   | <50          | 58                  | -   |              |
| C6 - C10 Fraction                          | 10   | mg/kg            | <10          | <10               | 0   | <10          | <10                | 0   | <10          | < 20                |     | <10          |
| C6 - C10 Fraction minus BTEX (F1)          | 10   | mg/kg            | <10          | <10               | 0   | <10          | <10                | 0   | <10          | < 20                |     | <10          |
| >C10 - C16 Fraction                        | 50   | mg/kg            | 50           | 110               | 75  | 190          | 210                | 10  | <50          | < 50                | 0   | -            |
| >C16 - C34 Fraction                        | 100  | mg/kg            | 1660         | 4860              | 98  | 6860         | 6610               | 4   | <100         | < 100               | 0   |              |
| >C34 - C40 Fraction                        | 100  | mg/kg            | 1970         | 5660              | 97  | 1720         | 1760               | 2   | <100         | 170                 | 52  |              |
| >C10 - C40 Fraction (sum)                  | 50   | mg/kg            | 3680         | 10600             | 97  | 8770         | 8580               | 2   | <50          |                     |     |              |
| >C10 - C16 Fraction minus Naphthalene (F2) | 50   | mg/kg            | 50           | 110               | 75  | 190          | 210                | 10  | <50          | < 50                | 0   |              |
| Benzene                                    | 0.2  | mg/kg            | <0.2         | <0.2              | 0   | <0.2         | <0.2               | 0   | <0.2         | < 0.1               |     | <0.2         |
| Toluene                                    | 0.5  | mg/kg            | <0.5         | <0.5              | 0   | <0.5         | <0.5               | 0   | <0.5         | < 0.1               |     | <0.5         |
| Ethylbenzene                               | 0.5  | mg/kg            | <0.5         | <0.5              | 0   | <0.5         | <0.5               | 0   | <0.5         | < 0.1               |     | <0.5         |
| meta- & para-Xylene                        | 0.5  | mg/kg            | 0.7          | <0.5              |     | <0.5         | <0.5               | 0   | <0.5         | < 0.2               |     | <0.5         |
| ortho-Xylene                               | 0.5  | mg/kg            | <0.5         | <0.5              | 0   | <0.5         | <0.5               | 0   | <0.5         | < 0.1               |     | <0.5         |
| Total Xylenes                              | 0.5  | mg/kg            | 0.7          | <0.5              |     | <0.5         | <0.5               | 0   | <0.5         | < 0.3               |     | <0.5         |
| Sum of BTEX                                | 0.2  | mg/kg            | 0.7          | <0.2              |     | <0.2         | <0.2               | 0   | <0.2         |                     |     | <0.2         |
| Naphthalene                                | 1    | mg/kg            | <1           | <1                | 0   | <1           | <1                 | 0   | <1           |                     |     | <1           |

RPD - relative percent difference

TCLP - toxicity characteristic leaching procedure

< result less than laboratory limit of reporting (LOR)



|                           |        | Sample ID       | QC156        | QC161        | QC162        |
|---------------------------|--------|-----------------|--------------|--------------|--------------|
| Parameter                 | LOR    | Sample Date     | 15/03/2016   | 16/03/2016   | 16/03/2016   |
|                           |        | Lab.Sample Ref. | ES1606083040 | ES1606083042 | ES1606083043 |
|                           |        | Unit            | Result       | Result       | Result       |
| Arsenic                   | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Beryllium                 | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Barium                    | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Cadmium                   | 0.0001 | mg/L            | <0.0001      | <0.0001      |              |
| Chromium                  | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Cobalt                    | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Copper                    | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Lead                      | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Manganese                 | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Nickel                    | 0.001  | mg/L            | <0.001       | <0.001       |              |
| Selenium                  | 0.01   | mg/L            | <0.01        | <0.01        |              |
| Vanadium                  | 0.01   | mg/L            | <0.01        | <0.01        |              |
| Zinc                      | 0.005  | mg/L            | <0.005       | <0.005       |              |
| Boron                     | 0.05   | mg/L            | <0.05        | <0.05        |              |
| Mercury                   | 0.0001 | mg/L            | <0.0001      | <0.0001      |              |
| Benzo(a)pyrene            | 0.5    | µg/L            | <0.5         | <0.5         |              |
| C6 - C9 Fraction          | 20     | µg/L            | <20          | <20          | <20          |
| C10 - C14 Fraction        | 50     | μg/L            | <50          | <50          |              |
| C15 - C28 Fraction        | 100    | µg/L            | <100         | <100         |              |
| C29 - C36 Fraction        | 50     | μg/L            | <50          | <50          |              |
| C10 - C36 Fraction (sum)  | 50     | µg/L            | <50          | <50          |              |
| C6 - C10 Fraction         | 20     | µg/L            | <20          | <20          | <20          |
| >C10 - C16 Fraction       | 100    | µg/L            | <100         | <100         |              |
| >C16 - C34 Fraction       | 100    | µg/L            | <100         | <100         |              |
| >C34 - C40 Fraction       | 100    | µg/L            | <100         | <100         |              |
| >C10 - C40 Fraction (sum) | 100    | µg/L            | <100         | <100         |              |
| Benzene                   | 1      | µg/L            | <1           | <1           | <1           |
| Toluene                   | 2      | µg/L            | <2           | <2           | <2           |
| Ethylbenzene              | 2      | µg/L            | <2           | <2           | <2           |
| meta- & para-Xylene       | 2      | µg/L            | <2           | <2           | <2           |
| ortho-Xylene              | 2      | µg/L            | <2           | <2           | <2           |
| Total Xylenes             | 2      | µg/L            | <2           | <2           | <2           |
| Sum of BTEX               | 1      | µg/L            | <1           | <1           | <1           |
| Naphthalene               | 5      | μg/L            | <5           | <5           | <5           |

< result less than laboratory limit of reporting (LOR)

Kurnell Asbestos Contaminated Soils Management Project Pipeways Asbestos Contaminated Soils Waste Classification Report Commercial-in-Confidence

# Appendix D

# **Calibration Records**

|                      | 1 d la |              | CALLE                                                                                                          | X LUL | JELL         | Dai         | ily Calib | ration Shee |
|----------------------|--------|--------------|----------------------------------------------------------------------------------------------------------------|-------|--------------|-------------|-----------|-------------|
| )ate                 | 5/3/16 | Job Name:    | 60488                                                                                                          | 809   | J            | ob Number:  | 00000     | 8807        |
| ield Staff:          | VATE   | PIQAIV       | 1                                                                                                              |       | Proje        | ct Manager: | STEVE     | Anoqu       |
| Veather:             | LAIN,  | OVELCA       | IST                                                                                                            |       |              |             |           | 28 g        |
| TEM                  | PID    | Explosimeter | Ac                                                                                                             | idity | Conductivity | Redox       | DO        |             |
| Jnits                | ppm    | % LEL        | pН                                                                                                             | pН    | uS/cm        | mV          | ppm 🚽     |             |
| /lodel               | MINIG  | AE 300       | 00                                                                                                             |       |              |             |           |             |
| Serial Number        | P103   | 000-1        | 4                                                                                                              |       |              |             |           |             |
| Calibration Standard | 1soht  | UION         |                                                                                                                |       | 6            |             |           | 0           |
| Concentration        | 100    | 0            |                                                                                                                |       |              |             |           |             |
| Calibration Time     | 0730   |              |                                                                                                                | 2     |              |             |           |             |
| Calibration Reading  | 99.3   |              |                                                                                                                |       |              |             |           |             |
| Comments             |        |              |                                                                                                                |       |              |             |           |             |
|                      |        |              |                                                                                                                | ×     |              |             |           | in<br>N     |
|                      |        |              |                                                                                                                |       |              |             |           |             |
| Checks               |        | 1            |                                                                                                                | 1     | 1 1          |             |           |             |
| Time                 |        |              |                                                                                                                |       |              |             |           |             |
| Comment              |        | - 0.<br>     | the second second second second second second second second second second second second second second second s |       |              |             |           |             |
| Somment              |        |              |                                                                                                                |       |              |             |           |             |
| Reading              |        |              |                                                                                                                |       |              | 2           |           |             |
| Comment              |        |              |                                                                                                                |       | 2            |             |           |             |
| Time                 |        |              |                                                                                                                |       |              | -           |           |             |
| Reading              |        |              |                                                                                                                |       |              |             |           |             |
| Comment              |        |              |                                                                                                                | 64    |              |             |           |             |
| Notes                | l      | I            |                                                                                                                |       | *            |             |           |             |
|                      |        |              |                                                                                                                |       |              |             |           |             |
|                      |        |              |                                                                                                                |       |              |             |           | 1           |

ans

Field Staff Signature:

#### Job Number: CALOOD CULATEL Job Name: 488872 rtt In Date Profan Field Staff:

# **Daily Calibration Sheet**

Project Manager: 0 TEAL BANDAU

# Weather:

| ITEM                 | PID    | Explosimeter | Aci | dity   | Conductivity | Redox | DO  |         |
|----------------------|--------|--------------|-----|--------|--------------|-------|-----|---------|
| Units                | ppm    | % LEL        | pН  | pН     | uS/cm        | mV    | ppm |         |
| Model                | MINE   | AE 800       | 0   |        |              |       |     |         |
| Serial Number        | P1031  | 000 - 14     |     |        |              | ~     |     |         |
| Calibration Standard | 180but | 11010        |     |        |              |       |     |         |
| Concentration        | 100,00 | M            |     |        |              |       |     |         |
| Calibration Time     | 0720   |              |     |        |              |       |     | W       |
| Calibration Reading  | 98-7   |              |     |        |              |       | -   |         |
| Comments             |        |              |     | a<br>2 |              |       |     | й.<br>К |

| Checks  |                    | <br> |   |         |      |
|---------|--------------------|------|---|---------|------|
| Time    |                    |      |   |         |      |
| Reading |                    |      |   |         | <br> |
| Comment | 10 - 12<br>10 - 12 |      | а |         |      |
| Reading |                    |      |   |         |      |
| Comment |                    |      |   |         |      |
| Time    |                    |      |   |         |      |
| Reading |                    |      |   |         | <br> |
| Comment |                    |      |   |         |      |
| Notes   |                    | 1    |   |         |      |
|         |                    |      |   |         |      |
|         | 0-                 |      |   | <u></u> | <br> |

Field Staff Signature:



# RENTALS

# Equipment Report – SOIL AUGER KIT

This soil auger kit has been cleaned and checked:

| Date:   | 01/03/2016 | Checked by: | M D |  |
|---------|------------|-------------|-----|--|
| Signed: | , ,        | D           |     |  |

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

| <br>Sent | Received     | Returned    | Item                                       |
|----------|--------------|-------------|--------------------------------------------|
| 1        | E            |             | 1 Regular Auger Head                       |
| 0/1      |              | (           | 1 Clay Auger Head                          |
| //       |              |             | 1 Sand Auger Head                          |
| 6/       |              |             | 1 Tee Handle / Ratchet Handle              |
|          | LT           |             | Extension rods Qty:                        |
|          |              |             | 1 Finger Ring for disconnecting extensions |
|          | 5            | Leter       | Canvas carry bag                           |
|          | $(\Box)$     | <u>L</u>    | Optional – straps for canvas carry bag     |
|          |              |             |                                            |
|          | ( <u>2</u>   |             |                                            |
|          |              |             | $\sim$                                     |
| Process  | ors Signatur | e/ Initials | 21                                         |
|          |              |             |                                            |

| Quote Reference      | CS004303 | Condition on return |
|----------------------|----------|---------------------|
| Customer Ref         |          |                     |
| Equipment ID         | AMS50SA  |                     |
| Equipment serial no. |          |                     |
| Return Date          | . 1 1    | *                   |
| Return Time          |          |                     |

| Phone: (Free       | e Call) 1300 735 295      | Fax: (Free Call) 1800 675 | 123 Emai         | I: BentalsAU@Thermofisher.com |
|--------------------|---------------------------|---------------------------|------------------|-------------------------------|
| Melbourne Branch   | Sydney Branch             | Adelaide Branch           | Brisbane Branch  | Perth Branch                  |
| 5 Caribbean Drive, | Level 1, 4 Talavera Road, | 27 Beulah Road, Norwood,  | Unit 2/5 Ross St | 121 Beringarra Ave            |
| Scoresby 3179      | North Ryde 2113           | South Australia 5067      | Newstead 4006    | Malaga WA 6000                |


# RENTALS

#### Equipment Report - MiniRAE 3000 PID

This Gas Meter has been performance checked and calibrated as follows:

| Lamp                                                                                 | Compound                                                              | Concentration                  | Zero       | Span                          | Traceability Lot # | Pass? |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|------------|-------------------------------|--------------------|-------|
| 10.6 eV                                                                              | Isobutylene                                                           | 100 ppm                        | 0.0 ppm    | (00,0 ppm                     | 1808481 Cyl 2      |       |
| Alarm Limits                                                                         |                                                                       | В                              | ump Test   |                               |                    |       |
| High                                                                                 | ico ppm                                                               |                                | Date       | Target Gas                    | Reading            | Pass? |
| Low                                                                                  | STO ppm                                                               |                                | 10/03/2016 | 100 ppm                       | 99.7 ppm           |       |
| 10 minutes test of     Spare battery st.     Electrical Safety     Tag No: Valid to: | complete<br>atus (Min 5.5 volts<br>Tag attached (AS<br>000 4<br>19105 | )<br>INZS 3760)<br>16<br>12016 |            | ☐ Data clean<br>☐ Filters che | ed<br>cked         |       |
| Date:/O                                                                              | 10314                                                                 | طار                            |            |                               |                    |       |
| Signed:                                                                              | h'/2                                                                  | h                              |            |                               |                    |       |

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

| Implicit of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of the list of |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Signed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| TFS Reference CS 00 43 03 Return Date: / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Customer Reference Return Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Equipment ID PID3000 - 14 Condition on return:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Equipment Serial No. 592 913 897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

"We do more than give you great equipment... We give you great solutions!"

| Phone: (Free                                           | e Call) 1300 735 295                                          | Fax: (Free Call) 1800 675 1                                         | 23                                                   | Email: RentalsAU@Thermofisher.com                    |
|--------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Melbourne Branch<br>5 Caribbean Drive<br>Scoresby 3179 | Sydney Branch<br>Level 1, 4 Talavera Road.<br>North Ryde 2113 | Adelaide Branch<br>27 Beulah Road, Norwood,<br>South Australia 5067 | Brisbane Branch<br>Unit 2/5 Ross St<br>Newstead 4006 | Perth Branch<br>121 Beringarra Ave<br>Malaga WA 6090 |
| Issue 6                                                |                                                               | Nov 12                                                              |                                                      | G0555                                                |



## RENTALS

#### Equipment Certification Report - Impact Pro Multi-Gas Detector

This Gas Meter has been performance checked/calibrated as follows:

| Fresh Air Calibration for all Sensors        | CO 100ppm Span                     |
|----------------------------------------------|------------------------------------|
| CH4 (combustibles)                           | 50% LEL (2.5%vol = 25,000ppm) Span |
| 02 00.0% volume check only within +/- 2%     | H2S 40ppm Span n                   |
| Charged 10 minute test complete              | Spare Battery min 4.2v Volts       |
| Electrical Safety Tag attached (AS/NZS 3760) |                                    |
| Tag no: 0004 /8                              |                                    |
| Valid to: 08/06/2016                         |                                    |
| * Calibration Gas traceability info          | unation available upon request     |
| Date:O3_Z016Checked                          | 164: MILENKO                       |
| Signed:                                      | ~                                  |
| 0                                            |                                    |

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

| Sent     | Received      | Returned | Item                                                 |
|----------|---------------|----------|------------------------------------------------------|
| /        | 1             | 1        | Impact Pro Gas Detector                              |
| /        |               | 1        | Monitor / Performance check / Bat % 190 %            |
|          | ř             | 1        | Monitor setup for METHANE                            |
|          | 1             | 4        | Power supply 240/12v with base station               |
|          | ).            |          | Flow adaptor [Grey] for calibration with hose        |
|          |               | 1        | Pump adaptor [Black] with hose and Inline filter     |
|          | Ĩ.            | 1        | Battery Cases with 4 Alkaline Batteries              |
| -        | 1             | )        | Allen Key located back of Instrument to open battery |
|          | 1             | Ϊ.       | Spare inline filters /                               |
| W.       |               | 1        | Instruction Manual behind foam on the lid of case    |
| -        |               |          | Quick Use Guide behind foam on the lid of case       |
|          |               | 1        | Carry Case                                           |
| 1        | í.            | Ĩ.       | Regulator included:                                  |
| 1        | F.            | 1        | Cal.Gas                                              |
| Processo | rs Signature/ | Initials | MS                                                   |

| Quote Reference      | CS 00 4303   | Condition on return |
|----------------------|--------------|---------------------|
| Customer Ref         |              |                     |
| Equipment ID         | IMPSO        |                     |
| Equipment serial no. | ZEC 100 7672 |                     |
| Return Date          | 1 1          |                     |
| Return Time          |              |                     |

"We do more than give you great equipment ... We give you great solutions!"

| Phone: (Free Call) 13 | 00 735 295                | Fax: (Free Call) 1800 675 123 | E                | mail: RentalsAU@Thermofisher.com |
|-----------------------|---------------------------|-------------------------------|------------------|----------------------------------|
| Melbourne Branch      | Sydney Branch             | Adelaide Branch               | Brisbane Branch  | Perth Branch                     |
| 5 Caribbean Drive.    | Level 1, 4 Talavera Road, | 27 Beulah Road, Norwood,      | Unit 2/5 Ross St | 121 Beringgara Ave               |
| Scoresby 3179         | North Ryde 2113           | South Australia 5067          | Newstead 4006    | Malang WA 6000                   |

Kurnell Asbestos Contaminated Soils Management Project Pipeways Asbestos Contaminated Soils Waste Classification Report Commercial-in-Confidence

## Appendix E

# Laboratory Reports

Printed copies of this document are uncontrolled Page 1 of 1

Sod

| Nami of Custody         Tel (2) also one<br>part of all operations         Tel (2) also one<br>part of all operations         Tel (2) also one<br>part of all operations         Tel<br>solutions         r>solutions         <thtel<br>solutions</thtel<br></thtel<br>                                                                                                                                                                                                                                                                | Esty ID<br>Date: |                        | Ciano      |            |                    | J                      |              | ,         |           |           |           | )              |                                        |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|------------|------------|--------------------|------------------------|--------------|-----------|-----------|-----------|-----------|----------------|----------------------------------------|--------------------------------------|
| Namio of Custody         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 894 000         Tel (3) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Esky ID          |                        |            |            | oned by.           | I Volitiqui            | 1110012010   | Dale      |           | Pigran    | Kate      | oigned:        | Kate Pigram                            | elinquished by:                      |
| Pain of Custody       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 884 (100       Tel: (20) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Esky ID          | ä                      | Siane      |            | shed hv:           | Relinnui               | · 17/02/2016 | Data      |           | 2         |           |                |                                        | uieu).                               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                        |            |            |                    |                        |              | -         |           | nents:    | Comr      |                | As Cd Cr Cu Ni Pb Zn Hg                | letals Required (Delete elements not |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Lab Report No.         |            | ×<br>×     | bag X              | × 500 mL               | ×            |           |           |           | 6<br>×    | 15/03/201      | B034_0.5-0.6                           | ŕ                                    |
| hain of Custody         Tel. (20) 894-000         Tel. (20) 894-000         Eaboratory Dealls         Tel.<br>Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000         Tel. (20) 894-000                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                        |            | ××         | bag X              | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | 6<br>×    | 15/03/201      | B034_0.0-0.2                           | 11                                   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Sy PO Internal         | All a ch   | ×<br>×     | jar; 1<br>bag<br>X | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | 6<br>×    | 15/03/201      | B035_0.5-0.6                           | 0                                    |
| hain of Custody       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000       Tel. (0) 804 000 <th< td=""><td><u>83</u></td><td></td><td>0X 0 30</td><td>×<br/>×</td><td>jar; 1<br/>bag<br/>X</td><td>1 x 125 mL<br/>x 500 mL</td><td>×</td><td></td><td></td><td></td><td>6<br/>×</td><td>15/03/201</td><td>B035_0.0-0.2</td><td>9</td></th<>                                                                                                                                                                                                                                              | <u>83</u>        |                        | 0X 0 30    | ×<br>×     | jar; 1<br>bag<br>X | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | 6<br>×    | 15/03/201      | B035_0.0-0.2                           | 9                                    |
| hain of Custody       Tel: (02) 804 000       Tel: (02) 804 000       Tel: (02) 804 000       Tel: (02) 804 000         say, NX 200       E-mail: Sighten Randall@aecom.om       Laboratory Details       Fac: (02) 804 000         say, NX 200       E-mail: Sighten Randall@aecom.om       Lab. Mare: Als       Fac: (02) 804 000         say, NX 200       E-mail: Sighten Randall@aecom.om       Lab. Mare: Als       Fac: (02) 804 000         say, NX 200       E-mail: Sighten Randall@aecom.om       Lab. Mare: Sighten Randall@aecom.om       Lab. Mare: Sighten Randall@aecom.om         sight N2 Camper Network Class.       Fac: (02) 804 000       Fac: (02) 804 000       Fac: (02) 804 000         sight N2 Camper Network Class.       Fac: (02) 804 000       Fac: (02) 804 000       Fac: (02) 804 000         sight N2 Camper Network Class.       Fac: (02) 804 000       Fac: (02) 804 000       Fac: (02) 804 000         sight N2 Camper Network Class.       Fac: (02) 804 000       Fac: (02) 804 000       Fac: (02) 804 000         sight N2 Camper Network Class.       Sight N2 Camper Network Class.       Fac: (02) 804 000       Fac: (02) 804 000         sight N2 Camper Network Class.       Sight N2 Camper Network Class.       Fac: (02) 804 000       Fac: (02) 804 000         sight N2 Camper Network Class.       Sight N2 Camper Network Class.       Fac: (02) 904 000       Fac: (02) 904 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | d Courier:             | Counti     | ××         | jar; 1<br>bag<br>X | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | 6<br>×    | 15/03/2010     | B036_0.5-0.6                           | भ                                    |
| hain of Custody       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (02) 894 000       rei (03) 804 000       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (04) 806       rei (06) 806 <threi (06)="" 806<="" th="">       rei (06) 806</threi>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        | 00111      | ×<br>×     | jar; 1<br>bag<br>X | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | 6<br>×    | 15/03/2010     | B036_0.0-0.2                           | L                                    |
| hain of Custody         Tel: (20) 804:000         Tel: (20) 804:000         Laboratory Details         Tel: (20) 804:000           121. 420 George Street.         Fac: (20) 804:000         E-mail: Stephen: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Lab. Name: ALS         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom.com         Fac: Randall@aecom         Fac: Randal@aecom <td< td=""><td></td><td>Talvsis: Eugen</td><td></td><td>×<br/>×</td><td>jar; 1<br/>bag X</td><td>1 x 125 mL<br/>x 500 mL</td><td>×</td><td></td><td></td><td></td><td>6<br/>X</td><td>14/03/2016</td><td>B012.5_0.0-0.2</td><td>6</td></td<>                                                                                                                                                                 |                  | Talvsis: Eugen         |            | ×<br>×     | jar; 1<br>bag X    | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | 6<br>X    | 14/03/2016     | B012.5_0.0-0.2                         | 6                                    |
| hain of Custody         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000         Tel: (20) 8034 0000                                                                                                                                                                                                                                                                                                                                                                                                        | Split WO Vallan  | 1 / Forward Lab /      | - Deut     | ×<br>×     | bag X              | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | s<br>X    | 14/03/2016     | B010.5_0.0-0.2                         | S                                    |
| Inain of Custody         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (22) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000         Tel: (23) 834 000                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                        |            | ×<br>×     | bag X              | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | 6<br>×    | 14/03/2016     | B009.5_0.0-0.2                         | ٢                                    |
| hain of Custody     Tel: (2) 834 000     Image: Revenue and and and and and and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |            | ×<br>×     | bag X              | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | ×         | 14/03/2016     | B007.5_0.0-0.2                         | 3                                    |
| hain of Custody       Tel: (2) 834 0001       Tel: (2) 834 0001       Tel: (2) 834 0001       Tel: (2) 834 0001         arey, NSW 200       E-raal: Stephen Randall@aecom.com       Laboratory Details       Fax: (2) 934 0001         arey, NSW 200       E-raal: Stephen Randall@aecom.com       Laboratory Corraci Name: Als       Fax: Fax: Fax: Fax: Fax: Fax: Fax: Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                | ne : + 61-2-8784 8555  | Telephor   | ××         | ar; 1<br>×         | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | ×         | 14/03/2016     | B003.5_0.0-0.2                         | 2                                    |
| hain of Custody       Itel:       Tel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                        |            | ×          | ar; 1<br>X         | 1 x 125 mL<br>x 500 mL | ×            |           |           |           | ×         | 14/03/2016     | B001_0.0-0.2                           | -                                    |
| hain of Custody       Tel: (02) 8934 0000       Laboratory Details       Tel: (02) 8934 0000         sney, NSW 2000       Fax: (02) 8934 0001       Lab. Name: ALS       Fax: (02) 8934 0001         sney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Name: ALS       Fax: (02) 8934 0001         sney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Address:       Freilminary Report by:         sney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Address:       Freilminary Report by:         sney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Address:       Freilminary Report by:         sney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Address:       Freilminary Report by:         sneystament live proteints       AECOM Project No: 60498804/1.2       Project Name: Catex Kumel       pro No         startareau an aterial moved from extractions?       Startareau an aterial moved from extractions?       None of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attraction of the startareau and attractio                                                                                                                                                                                                                                                                                                                                                          |                  |                        |            | Meta       | ©<br>Asbe          | r (No. & typ           | ice othe     | t'ed acid | other fil | water     | soil      | Date           | Sample ID                              | ٦                                    |
| hain of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control of Custody       Image: Control o                                                                                                                                                                                                                                                                                                                                                         |                  |                        |            | als (      | esto               | Contain                | ervation     | Pres      |           | Matrix    |           | Sampling       | )<br>į                                 | Lab.                                 |
| hain of Custody       v       Laboratory Details       Tel:         CM - Sydney       Tel: (02) 8934 0000       Lab. Name: ALS       Fax:         Servert       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         Jarey, NSW 2000       E-mail: Stephen, Randall@aecom.com       Lab. Name: ALS       Feilinnary Report by:         Jarey, NSW 2000       E-mail: Stephen, Randall@aecom.com       Lab. Ref:       Lab. Name: ALS         Vield By: Kate Pigram       AECOM Project No: 60488804/12       Project Name: Caltex Kurnell       PO No.         Secifications:       AECOM Project No: 60488804/12       Project Name: Caltex Kurnell       PO No.         sary sedimetrizationer:       AECOM Project No: 60488804/12       Yes (lick)       Manalysis Request         Jagent TAT required? (please circle:       24hr       48hr       Gays)       Environmental Division         sary sedimetrizationers?       sary sedimetrizationers?       Statizationers       Statizationers       Statizationers         Serial Quality Partnership:       Serial Calles       Statizationers       Statizationers       Statizationers       Statizationers         Statizational Division       Statizational Division       Statizationers       Statizationers       Statizationers       Statizationers         Statizational Division       St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                        |            | EX<br>NE   | s (/               | -<br>/                 |              |           |           |           |           |                | Hardcopy Email :                       | Report Format: Fax                   |
| hain of Custody       Image: Control of Custody       Tel:         Cont - Sydney       Tel: (02) 8934 0000       Fax: (02) 8934 0001       Fax: (02) 8934 0001         Server, Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George Street, et 21, 420 George S |                  | C DODODO S             | Г          | N E<br>PM  | Abs                |                        |              |           |           |           |           |                |                                        | Shell Quality Partnership:           |
| hain of Custody       Image: Control by Street       Tel: (02) 8934 0000       Tel: (02) 8934 0000       Tel: Fax: (02) 8934 0001       Lab. Name: ALS       Fax: Fax: Fax: Fax: Fax: Fax: Fax: Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | k Order Heterence      | 1 <u>%</u> | s(a)<br>13 | enc                |                        |              |           |           |           |           |                | ? (details:                            | Special storage requirements         |
| hain of Custody       Iaboratory Details       Tel:         CM - Sydney       Tel: (02) 8934 0000       Fax: (02) 8934 0001       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         el 21, 420 George Street,       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:       Fax: (02) 8934 0001       Fax: (02) 8934 0001         dney, NSW 2000       E-mail: Stephen, Randall@aecom.com       Lab. Address:       Final Report by:       Final Report by:         npied By: Kate Pigram       AECOM Project No: 6048804/1.2       Project Name: Caltex Kurnell       PO No.         sortifications:       2ethr       4ays)       AECOM Project No: 6048804/1.2       Project Name: Caltex Kurnell       PO No.         -ast TAT Guaranee Required?       2ethr       4ays)       Orther       Analysis Request       Orther         -ast TAT Guaranee Required?       excluded from extractions?       Post of the schuded from extractions?       Environmental Division       Environmental Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Sydney                 |            | P<br>)     | æ/p                |                        |              |           |           |           |           | er NEPM 5.1.1? | red from samples to be reported as pe  | % extraneous material remov          |
| hain of Custody       Tel:       Tel:         CoM - Sydney       Tel: (02) 8934 0000       Fax: (02) 8934 0001       Fax: (02) 8934 0001       Fax: (02) 8934 0001         Fax: (02) 8934 0001       Fax: (02) 8934 0001       Eab. Name: ALS       Fax: Preliminary Report by:         Iney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Address:       Preliminary Report by:         Iney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Ref:       Lab. Quote No:         Iney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Ref:       Lab. Quote No:         Inpled By: Kate Pigram       AECOM Project No: 60488804/12       Project Name: Cattex Kurnell       PO.No.         Specifications:       24hr       48hr       days)       Yes (tick)       Mail       Mail         Urgent TAT Guarantee Required?       48hr       days)       Yes (tick)       Mail       Mail       Mail       Mail         Fast TAT Guarantee Required?       Mail       Mail       Mail       Mail       Mail       Mail       Mail       Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | nmental Division       | Enviro     |            | ores               |                        |              |           |           |           |           | tions?         | t in waters to be excluded from extrac | Is any sediment layer present        |
| hain of Custody       I aboratory Details       Tel:         20M - Sydney       Tel: (02) 8934 0000       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         el 21, 420 George Street,       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         el 21, 420 George Street,       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         dney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Ref:       Final Report by:         dney, NSW 2000       AECOM Project No: 6048804/1.2       Project Name: Catex Kurnell       PO No.         moled By: Kate Pigram       AECOM Project No: 6048804/1.2       Project Name: Catex Kurnell       PO No.         secifications:       24hr       49hr       _days)       Yes (tick)       Analysis Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                        |            |            | sen                |                        |              |           |           |           |           |                | ζþ                                     | Fast TAT Guarantee Require           |
| hain of Custody     Element     Tel:       COM - Sydney     Tel: (02) 8934 0000     Fax: (02) 8934 0001     Lab. Name: ALS     Fax:       el 21, 420 George Street,     Fax: (02) 8934 0001     Lab. Name: ALS     Fax:     Freeliminary Report by:       dney, NSW 2000     E-mail: Stephen, Randall@aecom.com     Lab. Ref:     Lab. Quote No:       mpled By: Kate Pigram     AECOM Project No: 60438804/1.2     Project Name: Caltex Kurnell     PO No.       motifications:     Yes (tick)     Main (1)     Main (1)     Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                        |            |            | ice)               |                        |              |           |           |           |           | tays)          | ə circle: 24hr 48hrd                   | Urgent TAT required? (please         |
| hain of Custody       Laboratory Details       Tel:         COM - Sydney       Tel: (02) 8934 0000       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         el 21, 420 George Street,       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         dney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Contact Name:       Preliminary Report by:         dney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Lab. Ref:       Lab. Ref:       Lab Quote No:         mpled By: Kate Pigram       AECOM Project No: 60488804/1.2       Project Name: Caltex Kurnell       PO No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Other            | alysis Request         | An         |            | Ĵ                  | Yes (tic               |              |           |           | -         |           |                |                                        | pecifications:                       |
| hain of Custody       Laboratory Details       Tel:         COM - Sydney       Tel: (02) 8934 0000       Fax: (02) 8934 0001       Lab. Name: ALS       Fax:         el 21, 420 George Street,       Fax: (02) 8934 0001       Lab. Address:       Fex:       Preliminary Report by:         dney, NSW 2000       E-mail: Stephen.Randall@aecom.com       Contact Name:       Lab. Ref:       Lab Quote No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | PC NO.                 |            | ex Kurnell | ime: Calte         | Project Na             |              |           | 1.2       | )488804/1 | ct No: 60 | AECOM Proje    |                                        | mpled By: Kate Pigram                |
| hain of CustodyLaboratory DetailsTel:COM - SydneyTel: (02) 8934 0000Lab. Name: ALSTel:el 21, 420 George Street,Fax: (02) 8934 0001Lab. Name: ALSFax:Fax: (02) 8934 0001Fax: (02) 8934 0001Lab. Address:Preliminary Report by:dney, NSW 2000E-mail: Stephen.Randall@aecom.comContact Name:Final Report by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Lab Quote No:          | -          |            |                    | Lab. Ref:              |              |           |           |           |           |                |                                        |                                      |
| hain of Custody     Laboratory Details     Tel:       COM - Sydney     Tel: (02) 8934 0000     Lab. Name: ALS     Fax:       rel 21, 420 George Street,     Fax: (02) 8934 0001     Lab. Address:     Preliminary Report by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Final Report by:       |            |            | ame:               | Contact N              |              | . H       | ecom.co   | ndall@a   | hen.Rai   | E-mail: Step   |                                        | /dney, NSW 2000                      |
| hain of Custody     Laboratory Details     Tel:       COM - Sydney     Tel:     Tel:     (02) 8934 0000     Lab. Name: ALS     Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | Preliminary Report by: |            |            | ess:               | Lab. Addr              |              |           |           |           | 4 0001    | Fax: (02) 8934 |                                        | ć                                    |
| hain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Fax:                   |            |            | ∋: ALS             | Lab. Nam               |              |           |           |           | 0000      | Tel: (02) 8934 | -                                      | vel 21, 420 George Street            |
| hain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Tel:                   |            | etails     | tory D             | Labora                 |              |           |           |           |           |                |                                        | COM - Svdnev                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |            |            |                    |                        |              | -         |           |           |           |                | ody                                    | hain of Cust                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |            |            |                    |                        |              |           |           |           |           |                |                                        |                                      |

~

Printed copies of this document are uncontrolled Page 1 of 1

iso o

|                                                                     |                                           |                                    |                |         |        |        |        |        |       |                                   |        |          |      |          |       |                  |          |            |            | Í        | 0        | 3     |   |          |
|---------------------------------------------------------------------|-------------------------------------------|------------------------------------|----------------|---------|--------|--------|--------|--------|-------|-----------------------------------|--------|----------|------|----------|-------|------------------|----------|------------|------------|----------|----------|-------|---|----------|
| Chain of Cust                                                       | tody                                      |                                    |                |         |        |        |        |        |       |                                   |        |          |      |          |       |                  |          |            |            |          |          |       |   | <b>I</b> |
| AECOM - Sydney                                                      |                                           |                                    |                |         |        |        |        |        | •     | Laborato                          | Y<br>D | ətail    | S    |          |       | Tel:             |          |            |            |          |          |       |   |          |
| Level 21, 420 George Stree                                          | et,                                       | Tel: (02) 8934 0                   | 000            |         |        |        |        |        |       | Lab. Name: Al                     | Ś      |          |      |          |       | Fax:             |          |            |            |          |          |       |   |          |
| Sydney, NSW 2000                                                    |                                           | Fax: (02) 8934 (<br>E-mail: Stephe | )001<br>9n.Ran | dall@a  | tecom. | com    |        |        |       | Lab. Address:<br>Contact Name     |        |          |      |          |       | Preli<br>Final   | Repo     | / Repo     | ort by:    |          |          |       |   |          |
|                                                                     |                                           |                                    |                |         |        |        |        |        |       | Lab. Ref:                         |        |          |      |          |       | Lab              | Quote    | No:        |            |          |          |       |   |          |
| Sampled By: Kate Pigram                                             |                                           | AECOM Project                      | No: 60         | 488804/ | 1.2    |        |        |        |       | Project Name:                     | Calte  | ×Kur     | nell |          |       |                  | P        | 0 No.      |            |          |          |       |   |          |
| Specifications:                                                     |                                           |                                    |                |         |        |        |        |        |       | Voo /High)                        |        |          |      |          | An    | alysis           | s Rec    | ques       |            |          |          |       |   |          |
| -                                                                   |                                           |                                    |                |         |        |        |        |        |       | Tes (lick)                        | )      |          |      |          |       |                  |          |            |            | Т        | 1        | Other | - |          |
| 1. Urgent TAT required? (plea                                       | ise circle: 24hr 48hrda                   | iys)                               |                |         |        |        |        |        |       |                                   | ice    |          |      |          |       |                  |          |            |            |          |          |       |   | _        |
| 2. Fast TAT Guarantee Requir                                        | red?                                      |                                    | ŀ              |         |        |        |        |        |       |                                   | ser    |          |      |          |       |                  | -        |            |            |          |          |       |   |          |
| 3. Is any sediment layer prese                                      | nt in waters to be excluded from extracti | ons?                               |                |         |        |        |        |        |       |                                   | pre    |          |      |          |       |                  |          |            |            |          |          |       |   |          |
| 4. % extraneous material remu                                       | oved from samples to be reported as pe    | r NEPM 5.1.1?                      |                |         |        |        |        |        |       |                                   | ce/    | /'<br>3) |      |          |       |                  |          |            |            |          |          |       | _ |          |
| 5. Special storage requiremen                                       | its? (details:                            |                                    |                |         |        |        |        |        |       |                                   | sen    | л 13     |      |          | <br>  |                  |          |            |            |          |          |       |   |          |
| 7. Report Format: Fax                                               | Hardcopy Email :                          |                                    |                |         |        |        |        |        |       |                                   | (Al    | IEP      |      |          |       |                  |          | . <u> </u> |            |          |          |       |   |          |
| Lab.                                                                |                                           | Sampling                           |                | Matrix  |        |        | Preser | vation |       | Container                         | stos   | Is (1    |      |          |       |                  |          |            |            |          |          |       |   | _        |
| Ð                                                                   | Sample ID                                 | Date                               | soil           | water   | other  | filted | acid   | ice    | other | (No. & type)                      | Asbe   | Meta     |      |          |       |                  | <b> </b> |            |            | ┝─       |          |       | ╂ |          |
| \$۱                                                                 | B033_0.0-0.2                              | 15/03/2016                         | ×              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ××       |      |          |       |                  |          |            |            |          | +        |       | - |          |
| 41                                                                  | B033_0.5-0.6                              | 15/03/2016                         | ×              |         |        |        | -      | Х      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      | -        |       |                  |          |            |            | ┨──      | ┼─       |       | - |          |
| 51                                                                  | B032 0.0-0.2                              | 15/03/2016                         | ×              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | х      | ×        |      |          |       |                  |          |            |            |          |          |       | _ |          |
| ۱۴                                                                  | B032 0.5-0.6                              | 15/03/2016                         | Х              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×<br>×   |      |          |       |                  |          | <u> </u>   |            | <u> </u> |          |       |   |          |
| ۲)                                                                  | B031_0.0-0.2                              | 15/03/2016                         | ×              |         |        |        |        | Х      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      |          |       |                  |          |            |            |          | $\vdash$ |       |   |          |
| کر                                                                  | B031_0.5-0.6                              | 15/03/2016                         | Х              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      | <u> </u> |       |                  |          | ┝          |            |          |          |       |   |          |
| 14                                                                  | B016.5_0.0-0.2                            | 15/03/2016                         | Х              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      | -        |       |                  |          |            |            |          | ┼─       |       |   |          |
| cı                                                                  | B016.5 0.4-0.5                            | 15/03/2016                         | Х              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      |          |       |                  | [        |            |            |          |          |       |   |          |
| 21                                                                  | B016_0.0-0.2                              | 15/03/2016                         | Х              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      |          |       |                  |          |            |            |          |          |       |   |          |
| ۲٦                                                                  | B015.5_0.5-0.6                            | 15/03/2016                         | ×              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      |          | -     | ┢                |          | -          |            |          |          |       |   | 1        |
| ц                                                                   | B014_0.0-0.2                              | 15/03/2016                         | ×              |         |        |        |        | X      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        |      |          |       |                  |          |            |            |          |          |       |   |          |
| 22                                                                  | B014_0.5-0.6                              | 15/03/2016                         | Х              |         |        |        |        | ×      |       | 1 x 125 mL jar; 1<br>x 500 mL bag | ×      | ×        | Ê    |          |       |                  |          |            |            |          | -        |       |   |          |
| <ul> <li>Metals Required (Delete elements not required):</li> </ul> | As Cd Cr Cu Ni Pb Zn Hg                   |                                    | Comm           | ents:   |        |        |        |        |       |                                   |        |          |      |          |       |                  |          |            | 1 vabore 1 |          |          | i     |   |          |
| Relinquished by:                                                    | Kate Pigram                               | Signed:                            | Kate           | Pigrar  | п      |        | Date:  | 17/03/ | 2016  | Relinquished                      | by:    |          |      |          | Signe | . <mark>.</mark> |          |            |            |          |          | Ē     |   |          |
| Recieved by:                                                        | Fronk                                     | Signed:                            | ł              |         |        |        | Date:  | ŗ      | -16   | Recieved by                       |        |          |      | l        | Signe | 8                |          |            |            |          |          | le.   |   |          |

...

Printed copies of this document are uncontrolled Page 1 of 1

1500

|                                                                         |                                         |                  |         |         |        |         |         |           |                  |                               |       |          |           |          |       |       |          |           |        |          | Ъ        |          | 2        | ž        |          |          |   |
|-------------------------------------------------------------------------|-----------------------------------------|------------------|---------|---------|--------|---------|---------|-----------|------------------|-------------------------------|-------|----------|-----------|----------|-------|-------|----------|-----------|--------|----------|----------|----------|----------|----------|----------|----------|---|
|                                                                         | ouy                                     |                  |         |         |        |         |         |           |                  |                               |       | 5        | 7         |          |       |       | H<br>P   |           |        |          |          |          |          |          |          |          |   |
| AECOM - Sydney                                                          |                                         |                  | 6       |         |        |         |         |           | <u>ר</u> ק       | borator                       |       | era      | S         |          |       |       |          |           |        |          |          |          |          |          |          |          |   |
| Level 21, 420 George Stree                                              |                                         | Fax: (02) 8934 0 | 001     |         |        |         |         |           | Lab              | . Address:                    | (     |          |           |          |       |       | Prel     | imina     | iry Re | pode     | by:      |          |          |          |          |          |   |
| Sydney, NSW 2000                                                        |                                         | E-mail: Stephe   | n.Ranc  | tall@ae | ecom.c | m       |         |           | Cor              | itact Name:                   |       |          |           |          |       |       | Fina     | ll Rep    | ont b  | ¥.       |          |          |          |          |          |          |   |
|                                                                         |                                         |                  |         |         |        |         |         |           | Lab              | . Ref:                        |       |          |           |          |       |       | Lab      | Quo       | te No  |          |          |          |          |          |          |          |   |
| Sampled By: Kate Pigram                                                 |                                         | AECOM Project    | No: 604 | 88804/1 | N      |         |         |           | Pro              | ject Name:                    | Calte | ž        | rnell     |          |       |       |          |           | POZ    | ō        |          |          |          |          |          |          |   |
| Specifications:                                                         |                                         |                  |         |         |        |         |         |           |                  | es (tick)                     |       |          |           |          |       | A     | alys     | IS R      | nbe    | est      | -        | 1        |          | 2        |          |          |   |
| 1. Urgent TAT required? (please                                         | e circle: 24hr 48hrda                   | ays)             |         |         |        |         |         |           | +                |                               | ce)   |          |           |          | <br>  |       |          |           |        |          |          |          |          |          |          |          |   |
| 2. Fast TAT Guarantee Requir                                            | с, ре                                   |                  |         |         |        |         |         |           |                  |                               | sen   |          |           |          |       |       |          |           |        |          |          | _        |          |          | 20       |          |   |
| 3. Is any sediment layer presei                                         | t in waters to be excluded from extract | ions?            |         |         |        |         |         |           | ┢                |                               | ores  |          |           |          | <br>  |       |          |           |        |          |          | -        |          |          |          |          |   |
| 4. % extraneous material remo                                           | ved from samples to be reported as pe   | r NEPM 5.1.1?    |         |         |        |         |         |           |                  |                               | ce/   | ۱۲<br>۱۲ | <u>''</u> |          | <br>  |       | _        |           |        |          |          | _        |          | _        |          |          |   |
| 5. Special storage requiremen                                           | s? (details:                            |                  |         |         |        |         |         |           |                  |                               | sen   | D(a)     |           |          | <br>  |       |          |           |        |          |          |          |          |          |          |          |   |
| 7. Report Format: Fax                                                   | Hardcopy Email :                        |                  |         |         |        |         |         |           |                  |                               | 5 (A  |          |           |          | <br>_ |       |          |           |        |          |          |          |          |          |          |          |   |
| Lab.                                                                    |                                         | Sampling         |         | Matrix  |        |         | Preserv | ation     | 0                | ontainer                      | stos  |          |           |          |       |       |          |           |        |          | -        |          |          |          |          |          |   |
| ס                                                                       | Sample ID                               | Date             | soil    | water   | other  | filt'ed | acid    | ice ot    | her (I           | No. & type)                   | Asbe  | Moto     | Mela      |          |       |       |          |           |        |          |          |          | +        | $\vdash$ | +        | -        |   |
| х                                                                       | A003.5_0.0-0.2                          | 16/03/2016       | ×       |         |        |         |         | ×         | 1 ×              | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | 1×        |          | _     |       | +        |           |        | $\vdash$ |          | +        | +        |          | +        | +        |   |
| 26                                                                      | A005.5_0.0-0.2                          | 16/03/2016       | ×       |         |        |         |         | ×         | × ×              | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | <u> ×</u> |          |       | +     |          |           |        |          |          | +        | +        | +        | +        | +        |   |
| V                                                                       | A006.5_0.0-0.2                          | 16/03/2016       | ×       |         |        |         |         | ×         | × ×              | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | ×-        |          |       |       | -        |           |        | <u> </u> |          |          | ┢        | ┢        | ┢        |          |   |
| X2                                                                      | A007.5_0.0-0.2                          | 16/03/2016       | ×       |         |        |         |         | ×         | × 1<br>× ×       | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | ×_        | -        |       | ╂─    | ┢──      |           |        |          | ┢        | +        | -        | -        |          | +        |   |
| ы                                                                       | A008.5_0.0-0.2                          | 16/03/2016       | Х       |         |        |         |         | ×         | × 1<br>× ×       | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | ×         |          |       | -     | -        |           |        |          | _        |          | +        |          | +-       | +        |   |
| AN SIN                                                                  | A009.5_0.0-0.2                          | 16/03/2016       | ×       |         |        |         |         | ×         | × 1<br>× ×       | 125 mL jar; 1<br>500 mL bag   | ×     | ×_       | ×         |          |       |       |          |           |        |          | _        |          | $\vdash$ | +        | +        |          |   |
| 15                                                                      | A013.5_0.0-0.2                          | 16/03/2016       | Х       |         |        |         |         | ×         | × 1<br>× ×       | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | ×         |          |       |       | ┢        | 1         |        |          | _        | ╂─       |          |          |          | $\vdash$ |   |
| 71                                                                      | A013.5_0.4-0.5                          | 16/03/2016       | ×       |         |        |         |         | ×         | × <sup>1</sup> × | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | ×         | -        |       |       |          |           |        |          | <u> </u> |          | +        | +-       | +        |          |   |
| 12                                                                      | A014.5_0.4-0.5                          | 16/03/2016       | ×       |         |        |         |         | ×         | × <sup>1</sup>   | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | ×         | -        | _     |       |          |           |        |          | _        | -        |          |          | ┢        | +        |   |
| 15                                                                      | C011_0.0-0.2                            | 16/03/2016       | ×       |         |        |         |         | ×         | × <sup>1</sup>   | 125 mL jar; 1<br>500 mL bag   | ×     | ×        | ×         |          | ┣     | ┣     | $\vdash$ | $\square$ |        |          |          | <u> </u> |          |          | ╂—       | —        |   |
| Ж                                                                       | C012_0.0-0.2                            | 16/03/2016       | ×       |         |        |         |         | ×         | × <del>*</del>   | : 125 mL jar; 1<br>500 mL bag | ×     | ×        | ×         |          | ļ     | -     |          | +         | Ĺ      |          |          |          |          |          | +        | +        |   |
| 36                                                                      | QC150                                   | 14/03/2016       | ×       |         |        |         |         | ×         | _                | x 125 mL jar                  |       | ×        | <u>×</u>  | $\vdash$ |       |       |          |           |        | p<br>P   | nort No  |          | TR.      |          | <b> </b> | -        |   |
| <ul> <li>Metals Required (Delete elements not<br/>required):</li> </ul> | As Cd Cr Cu Ni Pb Zn Hg                 |                  | Comme   | ents:   |        |         |         |           |                  |                               |       |          |           |          |       |       |          |           |        |          |          |          |          |          |          |          | 1 |
| Relinquished by:                                                        | Kate Pigram                             | Signed:          | Kate    | Pigram  |        |         | Date:   | 17/03/201 | ה<br>ז ת         | elinquished                   | by:   |          |           |          |       | Signe | ;<br>B   |           |        |          |          |          | ]_       | Jate:    |          |          | ſ |
| Recieved by:                                                            | FONL                                    | Signed:          |         |         |        | ľ       | Date: 1 | 7-3-11    | R                | ecieved by:                   |       |          |           |          |       | außic | 8        |           |        |          |          |          | _        | ale.     |          |          |   |

۴.

Printed copies of this document are uncontrolled Page 1 of 1

|                                           |                       |                                                | ŝ       | 2           |        |                 |               |                                        |                                            |                                                      |
|-------------------------------------------|-----------------------|------------------------------------------------|---------|-------------|--------|-----------------|---------------|----------------------------------------|--------------------------------------------|------------------------------------------------------|
| Signed: Date:                             |                       | Recieved by:                                   | 3-16    | Date: (7-   |        |                 | $\mathbb{W}$  | Signed:                                | Frank                                      | Recieved by:                                         |
| Signed:                                   | .7                    | Relinquished by                                | 03/2016 | Date: 17    |        | ram             | ate Pig       | Signed: K                              | Kate Pigram                                | Relinquished by:                                     |
|                                           |                       |                                                |         |             |        |                 | omments       | 0                                      | As Cd Cr Cu Ni Pb Zn Hg                    | * Metals Required (Delete elements not<br>required): |
| Lab Report No. Esky ID                    |                       |                                                |         |             |        |                 |               |                                        |                                            |                                                      |
|                                           |                       |                                                |         |             |        | ╈               | ╞             |                                        |                                            |                                                      |
|                                           | ×                     | 2 x vials                                      |         |             |        | Ê               |               | 16/03/2016                             | QC162                                      | 43                                                   |
|                                           | ×<br>×                | 2 x vials; 1 x ruv<br>mL plæstic; 1 x<br>amber | Ê       |             |        | Ê               |               | 16/03/2016                             | QC161                                      | 42                                                   |
| PLEASE FORWARD SAMPLE AND COC TO EUROFINS | ×<br>×                | 1 x 125 mL jar                                 | Ê       |             |        | -               | ×             | 16/03/2016                             | QC158                                      | k                                                    |
|                                           | ××                    | 1 x 125 mL jar                                 | Ê       |             |        |                 | ×             | 16/03/2016                             | QC157                                      | પ                                                    |
| PLEASE FORWARD SAMPLE AND COC TO EUROFINS | ××                    | 1 x 125 mL jar                                 | Ê       |             |        |                 | ×             | 16/03/2016                             | QC155                                      | 4                                                    |
|                                           | × ×                   | 2 x vials; 1 x 100<br>mL plæstic; 1 x<br>amber |         |             |        |                 |               | 15/03/2016                             | QC156                                      | νh                                                   |
|                                           | ××                    | 1 x 125 mL jar                                 |         |             |        |                 | ×             | 15/03/2016                             | QC154                                      | 39                                                   |
|                                           | ××                    | 1 x 125 mL jar                                 |         |             |        |                 | ×             | 15/03/2016                             | QC152                                      | 28                                                   |
| PLEASE FORWARD SAMPLE AND COC TO EUROFINS |                       | 1 x 125 mL jar                                 |         |             |        |                 | ×             | 15/03/2016                             | QC151                                      | R                                                    |
|                                           | ×                     | 1 x 125 mL jar                                 |         | ×           |        |                 | ×             | 14/03/2016                             | QC153                                      | 77                                                   |
|                                           | TR⊦<br>Meta<br>TR⊦    | (No. & type)<br>Asb                            | e other | acid ice    | filted | er other        | oil wate      | Date                                   | Sample ID                                  | ם                                                    |
|                                           | I BT<br>als (<br>I C6 | Container                                      |         | Preservatio |        | -  <del>⊼</del> | Mat           | Sampling                               | )<br>j                                     | Lab.                                                 |
|                                           | EXN<br>NEF            | s (A                                           |         |             |        |                 |               |                                        | Hardcopy Email :                           | 7. Report Format: Fax                                |
|                                           | N B<br>PM<br>0 &      | bse                                            |         |             |        |                 |               |                                        |                                            | 6. Shell Quality Partnership:                        |
|                                           | (a)F<br>13)<br>. BT   | ence                                           |         |             |        |                 |               |                                        | Is? (details:                              | 5. Special storage requirement                       |
|                                           | EXN                   | e/pre                                          |         |             |        |                 |               | ns?<br>NFPM 5.1.1?                     | t in waters to be excluded from extraction | 3. Is any sediment layer presen                      |
|                                           |                       | ser                                            |         |             |        |                 |               |                                        | ed?                                        | 2. Fast TAT Guarantee Require                        |
|                                           |                       | nce)                                           |         |             |        |                 |               | s)                                     | se circle: 24hr 48hrday                    | 1. Urgent TAT required? (pleas                       |
| Other                                     |                       | Yes (tick)                                     |         |             |        |                 |               |                                        |                                            | Specifications:                                      |
| Analysis Reguest                          |                       |                                                |         |             |        |                 | . 00-1000     |                                        |                                            | sampled by: Nate Figram                              |
| PO No.                                    | ltex Kurnell          | Project Name: Ca                               |         |             |        | 04/1 2          | 888703        | AECOM Droiget No                       |                                            |                                                      |
| Lab Quote No:                             |                       | ah Ref:                                        |         |             |        |                 |               |                                        |                                            |                                                      |
| Final Report by:                          |                       | Contact Name:                                  |         |             | .com   | @aecom          | 1<br>Randall( | Fax: (02) 8934 000<br>E-mail: Stephen. |                                            | Sydney, NSW 2000                                     |
| Parliminary Deport by                     |                       | ab. Name: ALS                                  |         |             |        |                 |               | Tel: (02) 8934 0000                    | ,+                                         | Level 21, 420 George Street                          |
| Tel:                                      | Details               | _aboratory                                     | 4       |             |        |                 |               |                                        |                                            | AECOM - Sydney                                       |
|                                           |                       |                                                |         |             |        |                 |               |                                        | ody                                        | Chain of Cust                                        |
|                                           |                       |                                                |         |             |        |                 |               |                                        |                                            |                                                      |
|                                           |                       |                                                |         |             |        |                 |               |                                        |                                            |                                                      |

•

4



## **SAMPLE RECEIPT NOTIFICATION (SRN)**

| Work Order                                                 | : ES1606083                                                                                                  |                                  |                                                                                                                                            |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Client<br>Contact<br>Address                               | : <b>AECOM Australia Pty Ltd</b><br>: MR STEPHEN RANDALL<br>: LEVEL 21, 420 GEORGE STREET<br>SYDNEY NSW 2000 | Laboratory<br>Contact<br>Address | <ul> <li>Environmental Division Sydney</li> <li>Loren Schiavon</li> <li>277-289 Woodpark Road Smithfield<br/>NSW Australia 2164</li> </ul> |
| E-mail<br>Telephone<br>Facsimile                           | : Stephen.Randall⊡ aecom.com<br>: 02 8934 0000<br>: 02 8934 0001                                             | E-mail<br>Telephone<br>Facsimile | : loren.schiavon⊡ alsglobal.com<br>: +61 2 8784 8503<br>: +61-2-8784 8500                                                                  |
| Project<br>Order number<br>C-O-C number<br>Site<br>Sampler | : 60488804/1.2 Caltex Kurnell<br>: 60488804/1.2<br>:<br>:<br>: KATE PIGRAM                                   | Page<br>Quote number<br>QC Level | : 1 of 4<br>: EB2015AECOMAU0580 (EN/004/15)<br>: NEPM 2013 B3 & ALS QC Standard                                                            |
| Dates                                                      |                                                                                                              |                                  |                                                                                                                                            |

| Date Samples Received<br>Client Requested Due<br>Date | : 17-Mar-2016 3:00 PM<br>: 24-Mar-2016 | Issue Date<br>Scheduled Reporting Date | : 17-Mar-2016<br>: <b>24-Mar-2016</b> |
|-------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|
| Delivery Details                                      |                                        |                                        |                                       |
| Mode of Delivery                                      | : Undefined                            | Security Seal                          | : Intact.                             |
| No. of coolers/boxes                                  | : 5                                    | Temperature                            | : 4.6'c                               |
| Receipt Detail                                        | :                                      | No. of samples received / analysed     | : 42/42                               |

#### **General Comments**

- <sup>I</sup> This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- <sup>I</sup> Samples QC151, QC155 and QC158 will be sent to Eurofins as per coc re uest.
- <sup>I</sup> Sample A009.5\_0.0-0.2 was not received.
- □ Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis re□uested.
- <sup>□</sup> Sample(s) re uiring volatile organic compound analysis received in airtight containers (ZHE).
- <sup>I</sup> Asbestos analysis will be conducted by ALS Newcastle.
- Delease direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.



AOIST) XN with No Moisture for TBs

2013 Suite - incl. Digestion)

ation in Soils I PAH only

#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

#### ■ No sample container / preservation non-compliance e ists.

#### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

|                   |                 |                  | 5-100<br>Itent | 0<br>intific | 5 SIN    | EPM             |          | BTE             |
|-------------------|-----------------|------------------|----------------|--------------|----------|-----------------|----------|-----------------|
| Matrix: SOIL      |                 |                  | :A05           | s Ide        | EP07     | s-03<br>Is (N   | EXN      | 3-18 (<br>-C9)/ |
| Laboratory sample | Client sampling | Client sample ID | olL - E        | besto        | N - P/   | 0IL - S<br>Meta | OIL - 0  | IL - S          |
| ID                | date / time     |                  | S N            | As As        |          | SC<br>15        | S F      | S H             |
| ES1606083-001     | [ 14-Mar-2016 ] | B001_0.0-0.2     |                | U            | U        | U               | U        |                 |
| ES1606083-002     | [ 14-Mar-2016 ] | B003.5_0.0-0.2   | <u> </u>       | <u> </u>     | <u> </u> | U –             | <u> </u> |                 |
| ES1606083-003     | [ 14-Mar-2016 ] | B007.5_0.0-0.2   |                |              |          |                 |          |                 |
| ES1606083-004     | [ 14-Mar-2016 ] | B009.5_0.0-0.2   |                |              |          |                 |          |                 |
| ES1606083-005     | [ 14-Mar-2016 ] | B010.5_0.0-0.2   |                |              |          |                 |          |                 |
| ES1606083-006     | [ 14-Mar-2016 ] | B012.5_0.0-0.2   | 0              | ٥            | ٥        | ٥               | ٥        |                 |
| ES1606083-007     | [ 15-Mar-2016 ] | B036_0.0-0.2     |                | ٥            | ٥        | ٥               | ۵        |                 |
| ES1606083-008     | [ 15-Mar-2016 ] | B036_0.5-0.6     | 0              | ٥            | ۵        | 0               | ۵        |                 |
| ES1606083-009     | [ 15-Mar-2016 ] | B035_0.0-0.2     | 0              | ٥            | ۵        | ۵               | ۵        |                 |
| ES1606083-010     | [ 15-Mar-2016 ] | B035_0.5-0.6     | 0              | ۵            | ۵        | ۵               | ۵        |                 |
| ES1606083-011     | [ 15-Mar-2016 ] | B034_0.0-0.2     | 0              |              | ۵        | 0               | 0        |                 |
| ES1606083-012     | [ 15-Mar-2016 ] | B034_0.5-0.6     | 0              | ۵            | ۵        | 0               | 0        |                 |
| ES1606083-013     | [ 15-Mar-2016 ] | B033_0.0-0.2     | 0              | ۵            | ۵        | 0               | 0        |                 |
| ES1606083-014     | [ 15-Mar-2016 ] | B033_0.5-0.6     | 0              | 0            | 0        | 0               | 0        |                 |
| ES1606083-015     | [ 15-Mar-2016 ] | B032_0.0-0.2     |                |              | 0        | 0               | 0        |                 |
| ES1606083-016     | [ 15-Mar-2016 ] | B032_0.5-0.6     | 0              |              | 0        | 0               | 0        |                 |
| ES1606083-017     | [ 15-Mar-2016 ] | B031_0.0-0.2     | 0              |              | 0        | 0               | 0        |                 |
| ES1606083-018     | [ 15-Mar-2016 ] | B031_0.5-0.6     | 0              | 0            | 0        | 0               | 0        |                 |
| ES1606083-019     | [ 15-Mar-2016 ] | B016.5_0.0-0.2   | 0              |              | 0        | 0               | 0        |                 |
| ES1606083-020     | [ 15-Mar-2016 ] | B016.5_0.5-0.6   | 0              |              | 0        | 0               | 0        |                 |
| ES1606083-021     | [ 15-Mar-2016 ] | B016_0.0-0.2     | 0              |              |          | 0               | ۵        |                 |
| ES1606083-022     | [ 15-Mar-2016 ] | B015.5_0.5-0.6   | 0              | ۵            | 0        | 0               | 0        |                 |
| ES1606083-023     | [ 15-Mar-2016 ] | B014_0.0-0.2     | 0              | ۵            | ۵        | 0               | 0        |                 |
| ES1606083-024     | [ 15-Mar-2016 ] | B014_0.5-0.6     | 0              | ۵            | ۵        | 0               | ۵        |                 |
| ES1606083-025     | [ 16-Mar-2016 ] | A003.5_0.0-0.2   |                | ۵            | ۵        | ۵               | ۵        |                 |
| ES1606083-026     | [ 16-Mar-2016 ] | A005.5_0.0-0.2   | 0              | 0            | 0        | 0               | 0        |                 |
| ES1606083-027     | [ 16-Mar-2016 ] | A006.5_0.0-0.2   | 0              | 0            | ۵        | ۵               | ۵        |                 |
| ES1606083-028     | [ 16-Mar-2016 ] | A007.5_0.0-0.2   |                |              | ۵        | ۵               | 0        |                 |
| ES1606083-029     | [ 16-Mar-2016 ] | A008.5_0.0-0.2   | 0              | ۵            | ۵        | ۵               | 0        |                 |
| ES1606083-031     | [ 16-Mar-2016 ] | A013.5_0.0-0.2   |                |              | ۵        | ۵               | 0        |                 |
| ES1606083-032     | [ 16-Mar-2016 ] | A013.5_0.4-0.5   | 0              | ۵            | ۵        | ۵               | ۵        |                 |
| ES1606083-033     | [ 16-Mar-2016 ] | A014.5_0.4-0.5   |                | ٥            | ۵        | ۵               | ۵        |                 |
| ES1606083-034     | [ 16-Mar-2016 ] | C011_0.0-0.2     |                | ٥            | ۵        | ۵               | ۵        |                 |
| ES1606083-035     | [ 16-Mar-2016 ] | C012_0.0-0.2     |                | ٥            | ۵        | 0               | ۵        |                 |
| ES1606083-036     | [ 14-Mar-2016 ] | QC150            |                |              | ۵        | 0               | ۵        |                 |

| : 17-Mar-2016             |
|---------------------------|
| : 3 of 4                  |
| ES1606083 Amendment 0     |
| : AECOM Australia Pty Ltd |
|                           |



|               |                 |       | SOIL - EA055-103<br>Moisture Content | SOIL - EA200<br>Asbestos Identification in Soils - | SOIL - EP075 SIM PAH only<br>SIM - PAH only | SOIL - S-03<br>15 Metals (NEPM 2013 Suite - incl. Digestion) | SOIL - S-04<br>TRH/BTEXN | SOIL - S-18 (NO MOIST)<br>TRH(C6-C9)/BTEXN with No Moisture for TBs |  |
|---------------|-----------------|-------|--------------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|--------------------------|---------------------------------------------------------------------|--|
| ES1606083-037 | [ 14-Mar-2016 ] | QC153 |                                      |                                                    |                                             |                                                              |                          | 0                                                                   |  |
| ES1606083-038 | [ 15-Mar-2016 ] | QC152 | 0                                    |                                                    | 0                                           | 0                                                            |                          |                                                                     |  |
| ES1606083-039 | [ 15-Mar-2016 ] | QC154 | 0                                    |                                                    |                                             |                                                              |                          |                                                                     |  |
| ES1606083-041 | [ 16-Mar-2016 ] | QC157 | ۵                                    |                                                    | ۵                                           | ۵                                                            | ٥                        |                                                                     |  |

| Matrix: WATER           |                                |                  | - W-03<br>Is (NEPM Suite) |
|-------------------------|--------------------------------|------------------|---------------------------|
| Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | WATER<br>15 Meta          |
| ES1606083-040           | [ 15-Mar-2016 ]                | QC156            |                           |
| ES1606083-042           | [ 16-Mar-2016 ]                | QC161            |                           |

| Matrix: WATER<br>Laboratory sample | Client sampling<br>date / time | Client sample ID | VATER - EP075 SIM PAH only<br>SIM - PAH only | VATER - W-04<br>RH/BTEXN | VATER - W-18<br>'RH(C6 - C9)/BTEXN |
|------------------------------------|--------------------------------|------------------|----------------------------------------------|--------------------------|------------------------------------|
| ES1606083-040                      | [ 15-Mar-2016 ]                | QC156            |                                              |                          |                                    |
| ES1606083-042                      | [ 16-Mar-2016 ]                | QC161            | 0                                            | ۵                        |                                    |
| ES1606083-043                      | [ 16-Mar-2016 ]                | QC162            |                                              |                          | 0                                  |

#### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.



Stephen.Randall aecom.com

Stephen.Randall aecom.com

#### **Requested Deliverables**

#### AP\_C STOMER SERVICE ANZ

| - A4 - AU Tax Invoice (INV)                                                  | Email | ap_customerservice.anz⊡ aecom.co<br>m |
|------------------------------------------------------------------------------|-------|---------------------------------------|
| STEPHEN RANDALL                                                              |       |                                       |
| <ul> <li>AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | Stephen.Randall aecom.com             |
| <ul> <li>AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | Stephen.Randall aecom.com             |
| - DAU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)                          | Email | Stephen.Randall aecom.com             |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)               | Email | Stephen.Randall aecom.com             |
| - A4 - AU Tax Invoice (INV)                                                  | Email | Stephen.Randall aecom.com             |
| - Chain of Custody (CoC) (COC)                                               | Email | Stephen.Randall aecom.com             |
| - EDI Format - ENMRG (ENMRG)                                                 | Email | Stephen.Randall aecom.com             |
| <ul> <li>EDI Format - EQUIS V5 URS (EQUIS_V5_URS)</li> </ul>                 | Email | Stephen.Randall aecom.com             |
| - EDI Format - ESDAT (ESDAT)                                                 | Email | Stephen.Randall aecom.com             |

Email

Email

- EDI Format XTab (XTAB)
- Electronic SRN for EQuIS (ESRN\_EQUIS)



#### **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1606083                     | Page                    | : 1 of 22                                             |
|-------------------------|-------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : AECOM Australia Pty Ltd     | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : MR STEPHEN RANDALL          | Contact                 | Loren Schiavon                                        |
| Address                 | LEVEL 21, 420 GEORGE STREET   | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : 02 8934 0000                | Telephone               | : +61 2 8784 8503                                     |
| Project                 | : 60488804/1.2 Caltex Kurnell | Date Samples Received   | : 17-Mar-2016 15:00                                   |
| Order number            | : 60488804/1.2                | Date Analysis Commenced | : 18-Mar-2016                                         |
| C-O-C number            | :                             | Issue Date              | : 30-Mar-2016 16:07                                   |
| Sampler                 | : KATE PIGRAM                 |                         | NATA                                                  |
| Site                    | :                             |                         |                                                       |
| Quote number            | :                             |                         | NATA Accredited Laboratory 825                        |
| No. of samples received | : 42                          |                         | Accredited for compliance with                        |
| No. of samples analysed | : 42                          |                         | ISO/IEC 17025. ACCREDITATION                          |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position                 | Accreditation Category                   |
|-------------------|--------------------------|------------------------------------------|
| Celine Conceicao  | Senior Spectroscopist    | Sydney Inorganics, Smithfield, NSW       |
| Christopher Owler | Team Leader - Asbestos   | Newcastle - Asbestos, Mayfield West, NSW |
| Edwandy Fadjar    | Organic Coordinator      | Sydney Inorganics, Smithfield, NSW       |
| Edwandy Fadjar    | Organic Coordinator      | Sydney Organics, Smithfield, NSW         |
| Sanjeshni Jyoti   | Senior Chemist Volatiles | Sydney Organics, Smithfield, NSW         |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- EG035: Poor matrix spike recovery was obtained for Mercury on sample EP1602288-1 due to high matrix interference. Confirmed by re-analysis.
- **EG035:** Positive Hg results have been confirmed by reanalysis.
- EP075(SIM) : Particular samples required dilution due to sample matrix . LOR values have been adjusted accordingly.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

| Page       | : 3 of 22                   |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |                      | Clie        | ent sample ID   | B001_0.0-0.2  | B003.5_0.0-0.2 | B007.5_0.0-0.2 | B009.5_0.0-0.2  | B010.5_0.0-0.2 |
|--------------------------------------|----------------------|-------------|-----------------|---------------|----------------|----------------|-----------------|----------------|
|                                      | Cl                   | ient sampli | ing date / time | [14-Mar-2016] | [14-Mar-2016]  | [14-Mar-2016]  | [14-Mar-2016]   | [14-Mar-2016]  |
| Compound                             | CAS Number           | LOR         | Unit            | ES1606083-001 | ES1606083-002  | ES1606083-003  | ES1606083-004   | ES1606083-005  |
|                                      |                      |             |                 | Result        | Result         | Result         | Result          | Result         |
| EA055: Moisture Content              |                      |             |                 |               |                |                |                 |                |
| Moisture Content (dried @ 103°C)     |                      | 1           | %               | 2.8           | 4.1            | <1.0           | 46.4            | 23.9           |
| EA200: AS 4964 - 2004 Identification | of Asbestos in Soils | ;           |                 |               |                |                |                 |                |
| Asbestos Detected                    | 1332-21-4            | 0.1         | g/kg            | Yes           | Yes            | Yes            | Yes             | Yes            |
| Asbestos Type                        | 1332-21-4            | -           |                 | Am            | Am             | Am             | Am + (Trace-Am) | Am             |
| Sample weight (dry)                  |                      | 0.01        | g               | 331           | 238            | 614            | 141             | 185            |
| APPROVED IDENTIFIER:                 |                      | -           |                 | C.OWLER       | C.OWLER        | G.MORGAN       | G.MORGAN        | C.OWLER        |
| EG005T: Total Metals by ICP-AES      |                      |             |                 |               |                |                |                 |                |
| Arsenic                              | 7440-38-2            | 5           | mg/kg           | 6             | 14             | 5              | 24              | 10             |
| Barium                               | 7440-39-3            | 10          | mg/kg           | 130           | 110            | 30             | 490             | 70             |
| Beryllium                            | 7440-41-7            | 1           | mg/kg           | <1            | <1             | <1             | <1              | <1             |
| Boron                                | 7440-42-8            | 50          | mg/kg           | <50           | <50            | <50            | <50             | <50            |
| Cadmium                              | 7440-43-9            | 1           | mg/kg           | <1            | <1             | <1             | 3               | 1              |
| Chromium                             | 7440-47-3            | 2           | mg/kg           | 24            | 107            | 61             | 152             | 73             |
| Cobalt                               | 7440-48-4            | 2           | mg/kg           | 8             | 15             | 18             | 46              | 14             |
| Copper                               | 7440-50-8            | 5           | mg/kg           | 141           | 117            | 473            | 735             | 230            |
| Lead                                 | 7439-92-1            | 5           | mg/kg           | 50            | 144            | 621            | 393             | 249            |
| Manganese                            | 7439-96-5            | 5           | mg/kg           | 277           | 447            | 129            | 1220            | 172            |
| Nickel                               | 7440-02-0            | 2           | mg/kg           | 20            | 41             | 30             | 153             | 53             |
| Selenium                             | 7782-49-2            | 5           | mg/kg           | <5            | <5             | <5             | <5              | <5             |
| Vanadium                             | 7440-62-2            | 5           | mg/kg           | 37            | 60             | 10             | 112             | 27             |
| Zinc                                 | 7440-66-6            | 5           | mg/kg           | 1530          | 1710           | 6560           | 9100            | 4080           |
| EG035T: Total Recoverable Mercury    | y by FIMS            |             |                 |               |                |                |                 |                |
| Mercury                              | 7439-97-6            | 0.1         | mg/kg           | 5.2           | 2.1            | 0.3            | 61.7            | 17.6           |
| EP075(SIM)B: Polynuclear Aromatic    | Hydrocarbons         |             |                 |               |                |                |                 |                |
| Benzo(a)pyrene                       | 50-32-8              | 0.5         | mg/kg           | 1.4           | <0.5           | <0.5           | <0.5            | <0.5           |
| EP080/071: Total Petroleum Hydroca   | arbons               |             |                 |               |                |                |                 |                |
| C6 - C9 Fraction                     |                      | 10          | mg/kg           | <10           | <10            | <10            | <10             | <10            |
| C10 - C14 Fraction                   |                      | 50          | mg/kg           | <50           | <50            | <50            | <50             | 1660           |
| C15 - C28 Fraction                   |                      | 100         | mg/kg           | 15200         | 11600          | <100           | 1090            | 66700          |
| C29 - C36 Fraction                   |                      | 100         | mg/kg           | 9350          | 8160           | <100           | 1350            | 35300          |
| ^ C10 - C36 Fraction (sum)           |                      | 50          | mg/kg           | 24600         | 19800          | <50            | 2440            | 104000         |
| EP080/071: Total Recoverable Hydro   | ocarbons - NEPM 201  | 3 Fractio   | ns              |               |                |                |                 |                |
| C6 - C10 Fraction                    | C6_C10               | 10          | mg/kg           | <10           | <10            | <10            | <10             | <10            |
|                                      |                      |             |                 |               |                |                |                 |                |

| Page       | : 4 of 22                   |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)        | Client sample ID  |             |                | B001_0.0-0.2  | B003.5_0.0-0.2 | B007.5_0.0-0.2 | B009.5_0.0-0.2 | B010.5_0.0-0.2 |
|-------------------------------------------|-------------------|-------------|----------------|---------------|----------------|----------------|----------------|----------------|
|                                           | Cli               | ient sampli | ng date / time | [14-Mar-2016] | [14-Mar-2016]  | [14-Mar-2016]  | [14-Mar-2016]  | [14-Mar-2016]  |
| Compound                                  | CAS Number        | LOR         | Unit           | ES1606083-001 | ES1606083-002  | ES1606083-003  | ES1606083-004  | ES1606083-005  |
|                                           |                   |             |                | Result        | Result         | Result         | Result         | Result         |
| EP080/071: Total Recoverable Hydroca      | arbons - NEPM 201 | 3 Fractio   | ns - Continued |               |                |                |                |                |
| <sup>^</sup> C6 - C10 Fraction minus BTEX | C6_C10-BTEX       | 10          | mg/kg          | <10           | <10            | <10            | <10            | <10            |
| (F1)                                      |                   |             |                |               |                |                |                |                |
| >C10 - C16 Fraction                       |                   | 50          | mg/kg          | 290           | <50            | <50            | <50            | 5750           |
| >C16 - C34 Fraction                       |                   | 100         | mg/kg          | 22500         | 17900          | <100           | 2040           | 91700          |
| >C34 - C40 Fraction                       |                   | 100         | mg/kg          | 6160          | 4230           | <100           | 940            | 16000          |
| ^ >C10 - C40 Fraction (sum)               |                   | 50          | mg/kg          | 29000         | 22100          | <50            | 2980           | 113000         |
| ^ >C10 - C16 Fraction minus Naphthalene   |                   | 50          | mg/kg          | 290           | <50            | <50            | <50            | 5750           |
| (F2)                                      |                   |             |                |               |                |                |                |                |
| EP080: BTEXN                              |                   |             |                |               |                |                |                |                |
| Benzene                                   | 71-43-2           | 0.2         | mg/kg          | <0.2          | <0.2           | <0.2           | <0.2           | <0.2           |
| Toluene                                   | 108-88-3          | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5           | <0.5           | <0.5           |
| Ethylbenzene                              | 100-41-4          | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5           | <0.5           | <0.5           |
| meta- & para-Xylene                       | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5           | <0.5           | <0.5           |
| ortho-Xylene                              | 95-47-6           | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5           | <0.5           | <0.5           |
| ^ Sum of BTEX                             |                   | 0.2         | mg/kg          | <0.2          | <0.2           | <0.2           | <0.2           | <0.2           |
| ^ Total Xylenes                           | 1330-20-7         | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5           | <0.5           | <0.5           |
| Naphthalene                               | 91-20-3           | 1           | mg/kg          | <1            | <1             | <1             | <1             | <1             |
| EP075(SIM)S: Phenolic Compound Su         | rrogates          |             |                |               |                |                |                |                |
| Phenol-d6                                 | 13127-88-3        | 0.5         | %              | 92.6          | 88.0           | 94.9           | 100            | 93.0           |
| 2-Chlorophenol-D4                         | 93951-73-6        | 0.5         | %              | 89.5          | 90.6           | 98.3           | 99.6           | 91.5           |
| 2.4.6-Tribromophenol                      | 118-79-6          | 0.5         | %              | 103           | 107            | 114            | 119            | 123            |
| EP075(SIM)T: PAH Surrogates               |                   |             |                |               |                |                |                |                |
| 2-Fluorobiphenyl                          | 321-60-8          | 0.5         | %              | 98.0          | 75.1           | 99.3           | 106            | 88.9           |
| Anthracene-d10                            | 1719-06-8         | 0.5         | %              | 102           | 99.2           | 107            | 111            | 108            |
| 4-Terphenyl-d14                           | 1718-51-0         | 0.5         | %              | 105           | 99.6           | 95.4           | 102            | 112            |
| EP080S: TPH(V)/BTEX Surrogates            |                   |             |                |               |                |                |                |                |
| 1.2-Dichloroethane-D4                     | 17060-07-0        | 0.2         | %              | 96.1          | 103            | 98.9           | 89.6           | 97.0           |
| Toluene-D8                                | 2037-26-5         | 0.2         | %              | 109           | 116            | 106            | 94.6           | 103            |
| 4-Bromofluorobenzene                      | 460-00-4          | 0.2         | %              | 105           | 110            | 105            | 94.5           | 98.6           |

| Page       | 5 of 22                     |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)   | Client sample ID            |              |                 | B012.5_0.0-0.2 | B036_0.0-0.2  | B036_0.5-0.6  | B035_0.0-0.2  | B035_0.5-0.6  |
|--------------------------------------|-----------------------------|--------------|-----------------|----------------|---------------|---------------|---------------|---------------|
|                                      | Cl                          | lient sampli | ing date / time | [14-Mar-2016]  | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] |
| Compound                             | CAS Number                  | LOR          | Unit            | ES1606083-006  | ES1606083-007 | ES1606083-008 | ES1606083-009 | ES1606083-010 |
|                                      |                             |              |                 | Result         | Result        | Result        | Result        | Result        |
| EA055: Moisture Content              |                             |              |                 |                |               |               |               |               |
| Moisture Content (dried @ 103°C)     |                             | 1            | %               | 27.8           | 30.0          | 20.8          | 13.5          | 8.6           |
| EA200: AS 4964 - 2004 Identification | n of Asbestos in Soils      | 5            |                 |                |               |               |               |               |
| Asbestos Detected                    | 1332-21-4                   | 0.1          | g/kg            | No             | Yes           | Yes           | No            | No            |
| Asbestos Type                        | 1332-21-4                   | -            |                 | -              | Am            | Am            | -             | -             |
| Sample weight (dry)                  |                             | 0.01         | g               | 240            | 507           | 546           | 558           | 421           |
| APPROVED IDENTIFIER:                 |                             | -            |                 | S.SPOONER      | S.SPOONER     | G.MORGAN      | G.MORGAN      | S.SPOONER     |
| EG005T: Total Metals by ICP-AES      |                             |              |                 |                |               |               |               |               |
| Arsenic                              | 7440-38-2                   | 5            | mg/kg           | 18             | 6             | <5            | <5            | <5            |
| Barium                               | 7440-39-3                   | 10           | mg/kg           | 80             | 70            | <10           | 20            | <10           |
| Beryllium                            | 7440-41-7                   | 1            | mg/kg           | <1             | <1            | <1            | <1            | <1            |
| Boron                                | 7440-42-8                   | 50           | mg/kg           | <50            | <50           | <50           | <50           | <50           |
| Cadmium                              | 7440-43-9                   | 1            | mg/kg           | <1             | <1            | <1            | <1            | <1            |
| Chromium                             | 7440-47-3                   | 2            | mg/kg           | 36             | 26            | 4             | 20            | <2            |
| Cobalt                               | 7440-48-4                   | 2            | mg/kg           | 7              | 22            | <2            | 7             | <2            |
| Copper                               | 7440-50-8                   | 5            | mg/kg           | 151            | 92            | 11            | 118           | <5            |
| Lead                                 | 7439-92-1                   | 5            | mg/kg           | 204            | 83            | 13            | 234           | <5            |
| Manganese                            | 7439-96-5                   | 5            | mg/kg           | 123            | 365           | 31            | 138           | <5            |
| Nickel                               | 7440-02-0                   | 2            | mg/kg           | 22             | 58            | 5             | 19            | <2            |
| Selenium                             | 7782-49-2                   | 5            | mg/kg           | <5             | <5            | <5            | <5            | <5            |
| Vanadium                             | 7440-62-2                   | 5            | mg/kg           | 13             | 38            | 6             | 17            | <5            |
| Zinc                                 | 7440-66-6                   | 5            | mg/kg           | 2240           | 1830          | 148           | 1930          | <5            |
| EG035T: Total Recoverable Mercur     | ry by FIMS                  |              |                 |                |               |               |               |               |
| Mercury                              | 7439-97-6                   | 0.1          | mg/kg           | 3.7            | 0.6           | <0.1          | 0.3           | <0.1          |
| EP075(SIM)B: Polynuclear Aromatic    | c Hydrocarbons              |              |                 |                |               |               |               |               |
| Benzo(a)pyrene                       | 50-32-8                     | 0.5          | mg/kg           | <0.5           | <0.5          | <0.5          | <0.5          | <0.5          |
| EP080/071: Total Petroleum Hydroc    | arbons                      |              |                 |                |               |               |               |               |
| C6 - C9 Fraction                     |                             | 10           | mg/kg           | <10            | <10           | <10           | <10           | <10           |
| C10 - C14 Fraction                   |                             | 50           | mg/kg           | <50            | <50           | <50           | <50           | <50           |
| C15 - C28 Fraction                   |                             | 100          | mg/kg           | <100           | <100          | <100          | <100          | <100          |
| C29 - C36 Fraction                   |                             | 100          | mg/kg           | <100           | <100          | <100          | <100          | <100          |
| ^ C10 - C36 Fraction (sum)           |                             | 50           | mg/kg           | <50            | <50           | <50           | <50           | <50           |
| EP080/071: Total Recoverable Hydr    | ocarbons - NEP <u>M 201</u> | 3 Fractio    | ns              |                |               |               |               |               |
| C6 - C10 Fraction                    | C6_C10                      | 10           | mg/kg           | <10            | <10           | <10           | <10           | <10           |
|                                      |                             |              |                 |                | 1             | 1             |               |               |

| Page       | : 6 of 22                   |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                | B012.5_0.0-0.2 | B036_0.0-0.2  | B036_0.5-0.6  | B035_0.0-0.2  | B035_0.5-0.6  |
|-----------------------------------------|-------------------|-------------|----------------|----------------|---------------|---------------|---------------|---------------|
|                                         | Cl                | ient sampli | ng date / time | [14-Mar-2016]  | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] |
| Compound                                | CAS Number        | LOR         | Unit           | ES1606083-006  | ES1606083-007 | ES1606083-008 | ES1606083-009 | ES1606083-010 |
|                                         |                   |             |                | Result         | Result        | Result        | Result        | Result        |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio   | ns - Continued |                |               |               |               |               |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX       | 10          | mg/kg          | <10            | <10           | <10           | <10           | <10           |
| (F1)                                    |                   |             |                |                |               |               |               |               |
| >C10 - C16 Fraction                     |                   | 50          | mg/kg          | <50            | <50           | <50           | <50           | <50           |
| >C16 - C34 Fraction                     |                   | 100         | mg/kg          | <100           | <100          | <100          | <100          | <100          |
| >C34 - C40 Fraction                     |                   | 100         | mg/kg          | <100           | <100          | <100          | <100          | <100          |
| ^ >C10 - C40 Fraction (sum)             |                   | 50          | mg/kg          | <50            | <50           | <50           | <50           | <50           |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 50          | mg/kg          | <50            | <50           | <50           | <50           | <50           |
| (F2)                                    |                   |             |                |                |               |               |               |               |
| EP080: BTEXN                            |                   |             |                |                |               |               |               |               |
| Benzene                                 | 71-43-2           | 0.2         | mg/kg          | <0.2           | <0.2          | <0.2          | <0.2          | <0.2          |
| Toluene                                 | 108-88-3          | 0.5         | mg/kg          | <0.5           | <0.5          | <0.5          | <0.5          | <0.5          |
| Ethylbenzene                            | 100-41-4          | 0.5         | mg/kg          | <0.5           | <0.5          | <0.5          | <0.5          | <0.5          |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5           | <0.5          | <0.5          | <0.5          | <0.5          |
| ortho-Xylene                            | 95-47-6           | 0.5         | mg/kg          | <0.5           | <0.5          | <0.5          | <0.5          | <0.5          |
| ^ Sum of BTEX                           |                   | 0.2         | mg/kg          | <0.2           | <0.2          | <0.2          | <0.2          | <0.2          |
| ^ Total Xylenes                         | 1330-20-7         | 0.5         | mg/kg          | <0.5           | <0.5          | <0.5          | <0.5          | <0.5          |
| Naphthalene                             | 91-20-3           | 1           | mg/kg          | <1             | <1            | <1            | <1            | <1            |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |             |                |                |               |               |               |               |
| Phenol-d6                               | 13127-88-3        | 0.5         | %              | 93.7           | 92.5          | 97.2          | 96.6          | 91.9          |
| 2-Chlorophenol-D4                       | 93951-73-6        | 0.5         | %              | 97.6           | 94.6          | 98.8          | 97.4          | 93.1          |
| 2.4.6-Tribromophenol                    | 118-79-6          | 0.5         | %              | 114            | 117           | 118           | 117           | 102           |
| EP075(SIM)T: PAH Surrogates             |                   |             |                |                |               |               |               |               |
| 2-Fluorobiphenyl                        | 321-60-8          | 0.5         | %              | 102            | 99.2          | 103           | 102           | 96.3          |
| Anthracene-d10                          | 1719-06-8         | 0.5         | %              | 112            | 108           | 112           | 114           | 103           |
| 4-Terphenyl-d14                         | 1718-51-0         | 0.5         | %              | 101            | 100           | 104           | 108           | 99.2          |
| EP080S: TPH(V)/BTEX Surrogates          |                   |             |                |                |               |               |               |               |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 0.2         | %              | 88.7           | 88.8          | 88.6          | 87.2          | 91.2          |
| Toluene-D8                              | 2037-26-5         | 0.2         | %              | 96.5           | 95.8          | 94.0          | 92.6          | 93.9          |
| 4-Bromofluorobenzene                    | 460-00-4          | 0.2         | %              | 96.7           | 96.5          | 93.1          | 91.6          | 94.9          |

| Page       | : 7 of 22                   |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID            |           |       | B034_0.0-0.2  | B034_0.5-0.6  | B033_0.0-0.2  | B033_0.5-0.6  | B032_0.0-0.2  |
|-----------------------------------------|-----------------------------|-----------|-------|---------------|---------------|---------------|---------------|---------------|
|                                         | Client sampling date / time |           |       | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] |
| Compound                                | CAS Number                  | LOR       | Unit  | ES1606083-011 | ES1606083-012 | ES1606083-013 | ES1606083-014 | ES1606083-015 |
|                                         |                             |           |       | Result        | Result        | Result        | Result        | Result        |
| EA055: Moisture Content                 |                             |           |       |               |               |               |               |               |
| Moisture Content (dried @ 103°C)        |                             | 1         | %     | 12.2          | 16.0          | 22.9          | 18.9          | 48.5          |
| EA200: AS 4964 - 2004 Identification of | Asbestos in Soils           | ;         |       |               |               |               |               |               |
| Asbestos Detected                       | 1332-21-4                   | 0.1       | g/kg  | No            | No            | No            | No            | Yes           |
| Asbestos Type                           | 1332-21-4                   | -         |       | -             | -             | -             | -             | Am            |
| Sample weight (dry)                     |                             | 0.01      | g     | 368           | 445           | 437           | 655           | 292           |
| APPROVED IDENTIFIER:                    |                             | -         |       | S.SPOONER     | C.OWLER       | C.OWLER       | G.MORGAN      | G.MORGAN      |
| EG005T: Total Metals by ICP-AES         |                             |           |       |               |               |               |               |               |
| Arsenic                                 | 7440-38-2                   | 5         | mg/kg | <5            | <5            | <5            | <5            | 7             |
| Barium                                  | 7440-39-3                   | 10        | mg/kg | 20            | <10           | 10            | <10           | 90            |
| Beryllium                               | 7440-41-7                   | 1         | mg/kg | <1            | <1            | <1            | <1            | <1            |
| Boron                                   | 7440-42-8                   | 50        | mg/kg | <50           | <50           | <50           | <50           | <50           |
| Cadmium                                 | 7440-43-9                   | 1         | mg/kg | <1            | <1            | <1            | <1            | <1            |
| Chromium                                | 7440-47-3                   | 2         | mg/kg | 12            | 6             | 9             | <2            | 45            |
| Cobalt                                  | 7440-48-4                   | 2         | mg/kg | 3             | <2            | <2            | <2            | 11            |
| Copper                                  | 7440-50-8                   | 5         | mg/kg | 29            | <5            | 34            | <5            | 72            |
| Lead                                    | 7439-92-1                   | 5         | mg/kg | 47            | <5            | 37            | <5            | 82            |
| Manganese                               | 7439-96-5                   | 5         | mg/kg | 83            | <5            | 48            | <5            | 276           |
| Nickel                                  | 7440-02-0                   | 2         | mg/kg | 12            | <2            | 10            | <2            | 51            |
| Selenium                                | 7782-49-2                   | 5         | mg/kg | <5            | <5            | <5            | <5            | <5            |
| Vanadium                                | 7440-62-2                   | 5         | mg/kg | 9             | <5            | 10            | <5            | 34            |
| Zinc                                    | 7440-66-6                   | 5         | mg/kg | 772           | 32            | 155           | 14            | 1930          |
| EG035T: Total Recoverable Mercury by    | FIMS                        |           |       |               |               |               |               |               |
| Mercury                                 | 7439-97-6                   | 0.1       | mg/kg | 0.2           | <0.1          | 0.2           | <0.1          | 0.4           |
| EP075(SIM)B: Polynuclear Aromatic Hyd   | drocarbons                  |           |       |               |               |               |               |               |
| Benzo(a)pyrene                          | 50-32-8                     | 0.5       | mg/kg | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| EP080/071: Total Petroleum Hydrocarbo   | ons                         |           |       |               |               |               |               |               |
| C6 - C9 Fraction                        |                             | 10        | mg/kg | <10           | <10           | <10           | <10           | <10           |
| C10 - C14 Fraction                      |                             | 50        | mg/kg | <50           | <50           | <50           | <50           | <50           |
| C15 - C28 Fraction                      |                             | 100       | mg/kg | <100          | 240           | <100          | <100          | 4780          |
| C29 - C36 Fraction                      |                             | 100       | mg/kg | <100          | 260           | <100          | <100          | 2990          |
| ^ C10 - C36 Fraction (sum)              |                             | 50        | mg/kg | <50           | 500           | <50           | <50           | 7770          |
| EP080/071: Total Recoverable Hydrocar   | bons - NEPM 201             | 3 Fractio | ns    |               |               |               |               |               |
| C6 - C10 Fraction                       | C6_C10                      | 10        | mg/kg | <10           | <10           | <10           | <10           | <10           |

| Page       | : 8 of 22                   |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                | B034_0.0-0.2  | B034_0.5-0.6  | B033_0.0-0.2  | B033_0.5-0.6  | B032_0.0-0.2  |
|-----------------------------------------|-------------------|-------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                         | Cl                | ient sampli | ng date / time | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] |
| Compound                                | CAS Number        | LOR         | Unit           | ES1606083-011 | ES1606083-012 | ES1606083-013 | ES1606083-014 | ES1606083-015 |
|                                         |                   |             |                | Result        | Result        | Result        | Result        | Result        |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio   | ns - Continued |               |               |               |               |               |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX       | 10          | mg/kg          | <10           | <10           | <10           | <10           | <10           |
| (F1)                                    |                   |             |                |               |               |               |               |               |
| >C10 - C16 Fraction                     |                   | 50          | mg/kg          | <50           | 240           | <50           | <50           | 190           |
| >C16 - C34 Fraction                     |                   | 100         | mg/kg          | <100          | 320           | <100          | <100          | 6860          |
| >C34 - C40 Fraction                     |                   | 100         | mg/kg          | <100          | 380           | <100          | <100          | 1720          |
| ^ >C10 - C40 Fraction (sum)             |                   | 50          | mg/kg          | <50           | 940           | <50           | <50           | 8770          |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 50          | mg/kg          | <50           | 240           | <50           | <50           | 190           |
| (F2)                                    |                   |             |                |               |               |               |               |               |
| EP080: BTEXN                            |                   |             |                |               |               |               |               |               |
| Benzene                                 | 71-43-2           | 0.2         | mg/kg          | <0.2          | <0.2          | <0.2          | <0.2          | <0.2          |
| Toluene                                 | 108-88-3          | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| Ethylbenzene                            | 100-41-4          | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| ortho-Xylene                            | 95-47-6           | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| ^ Sum of BTEX                           |                   | 0.2         | mg/kg          | <0.2          | <0.2          | <0.2          | <0.2          | <0.2          |
| ^ Total Xylenes                         | 1330-20-7         | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          | <0.5          |
| Naphthalene                             | 91-20-3           | 1           | mg/kg          | <1            | <1            | <1            | <1            | <1            |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |             |                |               |               |               |               |               |
| Phenol-d6                               | 13127-88-3        | 0.5         | %              | 96.3          | 101           | 96.1          | 95.9          | 103           |
| 2-Chlorophenol-D4                       | 93951-73-6        | 0.5         | %              | 96.1          | 102           | 98.1          | 98.7          | 100           |
| 2.4.6-Tribromophenol                    | 118-79-6          | 0.5         | %              | 107           | 106           | 100           | 97.6          | 108           |
| EP075(SIM)T: PAH Surrogates             |                   |             |                |               |               |               |               |               |
| 2-Fluorobiphenyl                        | 321-60-8          | 0.5         | %              | 103           | 101           | 102           | 103           | 103           |
| Anthracene-d10                          | 1719-06-8         | 0.5         | %              | 112           | 109           | 111           | 112           | 115           |
| 4-Terphenyl-d14                         | 1718-51-0         | 0.5         | %              | 107           | 105           | 107           | 109           | 115           |
| EP080S: TPH(V)/BTEX Surrogates          |                   |             |                |               |               |               |               |               |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 0.2         | %              | 97.9          | 97.6          | 96.6          | 94.8          | 85.7          |
| Toluene-D8                              | 2037-26-5         | 0.2         | %              | 102           | 90.9          | 98.7          | 96.8          | 89.3          |
| 4-Bromofluorobenzene                    | 460-00-4          | 0.2         | %              | 103           | 93.0          | 96.9          | 96.4          | 87.0          |

| Page       | : 9 of 22                   |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)          | Client sample ID     |             |                | B032_0.5-0.6  | B031_0.0-0.2  | B031_0.5-0.6  | B016.5_0.0-0.2 | B016.5_0.5-0.6 |
|---------------------------------------------|----------------------|-------------|----------------|---------------|---------------|---------------|----------------|----------------|
|                                             | Cl                   | ient sampli | ng date / time | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016]  | [15-Mar-2016]  |
| Compound                                    | CAS Number           | LOR         | Unit           | ES1606083-016 | ES1606083-017 | ES1606083-018 | ES1606083-019  | ES1606083-020  |
|                                             |                      |             |                | Result        | Result        | Result        | Result         | Result         |
| EA055: Moisture Content                     |                      |             |                |               |               |               |                |                |
| Moisture Content (dried @ 103°C)            |                      | 1           | %              | 19.4          | 22.3          | 14.9          | 24.7           | 18.6           |
| EA200: AS 4964 - 2004 Identification of Asl | bestos in Soils      |             |                |               |               |               |                |                |
| Asbestos Detected                           | 1332-21-4            | 0.1         | g/kg           | No            | No            | No            | No             | No             |
| Asbestos Type                               | 1332-21-4            | -           |                | -             | -             | -             | -              | -              |
| Sample weight (dry)                         |                      | 0.01        | g              | 440           | 469           | 438           | 422            | 274            |
| APPROVED IDENTIFIER:                        |                      | -           |                | S.SPOONER     | S.SPOONER     | G.MORGAN      | G.MORGAN       | C.OWLER        |
| EG005T: Total Metals by ICP-AES             |                      |             |                |               |               |               |                |                |
| Arsenic                                     | 7440-38-2            | 5           | mg/kg          | <5            | <5            | <5            | <5             | <5             |
| Barium                                      | 7440-39-3            | 10          | mg/kg          | <10           | 30            | <10           | <10            | <10            |
| Beryllium                                   | 7440-41-7            | 1           | mg/kg          | <1            | <1            | <1            | <1             | <1             |
| Boron                                       | 7440-42-8            | 50          | mg/kg          | <50           | <50           | <50           | <50            | <50            |
| Cadmium                                     | 7440-43-9            | 1           | mg/kg          | <1            | <1            | <1            | <1             | <1             |
| Chromium                                    | 7440-47-3            | 2           | mg/kg          | 7             | 23            | 6             | 4              | 19             |
| Cobalt                                      | 7440-48-4            | 2           | mg/kg          | <2            | 11            | <2            | <2             | <2             |
| Copper                                      | 7440-50-8            | 5           | mg/kg          | <5            | 110           | <5            | 14             | <5             |
| Lead                                        | 7439-92-1            | 5           | mg/kg          | <5            | 87            | 50            | 16             | <5             |
| Manganese                                   | 7439-96-5            | 5           | mg/kg          | <5            | 192           | <5            | 15             | <5             |
| Nickel                                      | 7440-02-0            | 2           | mg/kg          | 5             | 34            | 3             | 3              | 9              |
| Selenium                                    | 7782-49-2            | 5           | mg/kg          | <5            | <5            | <5            | <5             | <5             |
| Vanadium                                    | 7440-62-2            | 5           | mg/kg          | 7             | 19            | <5            | <5             | <5             |
| Zinc                                        | 7440-66-6            | 5           | mg/kg          | <5            | 930           | 10            | 134            | 10             |
| EG035T: Total Recoverable Mercury by Fl     | MS                   |             |                |               |               |               |                |                |
| Mercury                                     | 7439-97-6            | 0.1         | mg/kg          | <0.1          | 0.3           | <0.1          | 0.1            | <0.1           |
| EP075(SIM)B: Polynuclear Aromatic Hydro     | carbons              |             |                |               |               |               |                |                |
| Benzo(a)pyrene                              | 50-32-8              | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5           |
| EP080/071: Total Petroleum Hydrocarbons     |                      |             |                |               |               |               |                |                |
| C6 - C9 Fraction                            |                      | 10          | mg/kg          | <10           | <10           | <10           | <10            | <10            |
| C10 - C14 Fraction                          |                      | 50          | mg/kg          | <50           | <50           | <50           | <50            | <50            |
| C15 - C28 Fraction                          |                      | 100         | mg/kg          | <100          | 2550          | <100          | <100           | <100           |
| C29 - C36 Fraction                          |                      | 100         | mg/kg          | <100          | 3020          | 160           | <100           | <100           |
| ^ C10 - C36 Fraction (sum)                  |                      | 50          | mg/kg          | <50           | 5570          | 160           | <50            | <50            |
| EP080/071: Total Recoverable Hydrocarbo     | ns - NEPM <u>201</u> | 3 Fractio   | ns             |               |               |               |                |                |
| C6 - C10 Fraction                           | C6 C10               | 10          | mg/kg          | <10           | <10           | <10           | <10            | <10            |

| Page       | : 10 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                | B032_0.5-0.6  | B031_0.0-0.2  | B031_0.5-0.6  | B016.5_0.0-0.2 | B016.5_0.5-0.6 |
|-----------------------------------------|-------------------|-------------|----------------|---------------|---------------|---------------|----------------|----------------|
|                                         | Cl                | ient sampli | ng date / time | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [15-Mar-2016]  | [15-Mar-2016]  |
| Compound                                | CAS Number        | LOR         | Unit           | ES1606083-016 | ES1606083-017 | ES1606083-018 | ES1606083-019  | ES1606083-020  |
|                                         |                   |             |                | Result        | Result        | Result        | Result         | Result         |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio   | ns - Continued |               |               |               |                |                |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX       | 10          | mg/kg          | <10           | <10           | <10           | <10            | <10            |
| (F1)                                    |                   |             |                |               |               |               |                |                |
| >C10 - C16 Fraction                     |                   | 50          | mg/kg          | <50           | <50           | <50           | <50            | <50            |
| >C16 - C34 Fraction                     |                   | 100         | mg/kg          | <100          | 4820          | 140           | <100           | <100           |
| >C34 - C40 Fraction                     |                   | 100         | mg/kg          | <100          | 1720          | 180           | <100           | <100           |
| ^ >C10 - C40 Fraction (sum)             |                   | 50          | mg/kg          | <50           | 6540          | 320           | <50            | <50            |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 50          | mg/kg          | <50           | <50           | <50           | <50            | <50            |
| (F2)                                    |                   |             |                |               |               |               |                |                |
| EP080: BTEXN                            |                   |             |                |               |               |               |                |                |
| Benzene                                 | 71-43-2           | 0.2         | mg/kg          | <0.2          | <0.2          | <0.2          | <0.2           | <0.2           |
| Toluene                                 | 108-88-3          | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5           |
| Ethylbenzene                            | 100-41-4          | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5           |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5           |
| ortho-Xylene                            | 95-47-6           | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5           |
| ^ Sum of BTEX                           |                   | 0.2         | mg/kg          | <0.2          | <0.2          | <0.2          | <0.2           | <0.2           |
| ^ Total Xylenes                         | 1330-20-7         | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5           | <0.5           |
| Naphthalene                             | 91-20-3           | 1           | mg/kg          | <1            | <1            | <1            | <1             | <1             |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |             |                |               |               |               |                |                |
| Phenol-d6                               | 13127-88-3        | 0.5         | %              | 101           | 91.2          | 88.1          | 99.0           | 92.0           |
| 2-Chlorophenol-D4                       | 93951-73-6        | 0.5         | %              | 105           | 90.6          | 90.3          | 102            | 95.3           |
| 2.4.6-Tribromophenol                    | 118-79-6          | 0.5         | %              | 107           | 127           | 131           | 142            | 128            |
| EP075(SIM)T: PAH Surrogates             |                   |             |                |               |               |               |                |                |
| 2-Fluorobiphenyl                        | 321-60-8          | 0.5         | %              | 104           | 90.0          | 90.0          | 100            | 93.6           |
| Anthracene-d10                          | 1719-06-8         | 0.5         | %              | 113           | 102           | 105           | 117            | 108            |
| 4-Terphenyl-d14                         | 1718-51-0         | 0.5         | %              | 109           | 97.0          | 99.6          | 113            | 105            |
| EP080S: TPH(V)/BTEX Surrogates          |                   |             |                |               |               |               |                |                |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 0.2         | %              | 88.3          | 95.0          | 97.1          | 100            | 93.6           |
| Toluene-D8                              | 2037-26-5         | 0.2         | %              | 96.9          | 98.9          | 97.6          | 102            | 95.8           |
| 4-Bromofluorobenzene                    | 460-00-4          | 0.2         | %              | 93.2          | 96.9          | 97.4          | 101            | 96.0           |

| Page       | : 11 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                        | Client sample ID |             |                | B016_0.0-0.2  | B015.5_0.5-0.6 | B014_0.0-0.2  | B014_0.5-0.6  | A003.5_0.0-0.2 |
|-----------------------------------------------------------|------------------|-------------|----------------|---------------|----------------|---------------|---------------|----------------|
|                                                           | Cl               | ient sampli | ng date / time | [15-Mar-2016] | [15-Mar-2016]  | [15-Mar-2016] | [15-Mar-2016] | [16-Mar-2016]  |
| Compound                                                  | CAS Number       | LOR         | Unit           | ES1606083-021 | ES1606083-022  | ES1606083-023 | ES1606083-024 | ES1606083-025  |
|                                                           |                  |             |                | Result        | Result         | Result        | Result        | Result         |
| EA055: Moisture Content                                   |                  |             |                |               |                |               |               |                |
| Moisture Content (dried @ 103°C)                          |                  | 1           | %              | 40.2          | 19.6           | 24.4          | 19.3          | 20.3           |
| EA200: AS 4964 - 2004 Identification of Asbestos in Soils |                  |             |                |               |                |               |               |                |
| Asbestos Detected                                         | 1332-21-4        | 0.1         | g/kg           | Yes           | No             | No            | No            | No             |
| Asbestos Type                                             | 1332-21-4        | -           |                | Am            | -              | -             | -             | -              |
| Sample weight (dry)                                       |                  | 0.01        | g              | 367           | 886            | 410           | 679           | 501            |
| APPROVED IDENTIFIER:                                      |                  | -           |                | C.OWLER       | S.SPOONER      | G.MORGAN      | C.OWLER       | G.MORGAN       |
| EG005T: Total Metals by ICP-AES                           |                  |             |                |               |                |               |               |                |
| Arsenic                                                   | 7440-38-2        | 5           | mg/kg          | 9             | <5             | 7             | <5            | 7              |
| Barium                                                    | 7440-39-3        | 10          | mg/kg          | 80            | <10            | 10            | <10           | 20             |
| Beryllium                                                 | 7440-41-7        | 1           | mg/kg          | <1            | <1             | <1            | <1            | <1             |
| Boron                                                     | 7440-42-8        | 50          | mg/kg          | <50           | <50            | <50           | <50           | <50            |
| Cadmium                                                   | 7440-43-9        | 1           | mg/kg          | <1            | <1             | <1            | <1            | <1             |
| Chromium                                                  | 7440-47-3        | 2           | mg/kg          | 24            | <2             | 8             | <2            | 31             |
| Cobalt                                                    | 7440-48-4        | 2           | mg/kg          | 7             | <2             | <2            | <2            | 4              |
| Copper                                                    | 7440-50-8        | 5           | mg/kg          | 500           | <5             | 17            | <5            | 69             |
| Lead                                                      | 7439-92-1        | 5           | mg/kg          | 109           | <5             | 16            | <5            | 99             |
| Manganese                                                 | 7439-96-5        | 5           | mg/kg          | 589           | <5             | 28            | <5            | 55             |
| Nickel                                                    | 7440-02-0        | 2           | mg/kg          | 25            | <2             | 5             | <2            | 11             |
| Selenium                                                  | 7782-49-2        | 5           | mg/kg          | <5            | <5             | <5            | <5            | <5             |
| Vanadium                                                  | 7440-62-2        | 5           | mg/kg          | 32            | <5             | 5             | <5            | 9              |
| Zinc                                                      | 7440-66-6        | 5           | mg/kg          | 811           | <5             | 510           | 10            | 407            |
| EG035T: Total Recoverable Mercury by F                    | IMS              |             |                |               |                |               |               |                |
| Mercury                                                   | 7439-97-6        | 0.1         | mg/kg          | 1.6           | <0.1           | 0.2           | <0.1          | 0.2            |
| EP075(SIM)B: Polynuclear Aromatic Hydr                    | ocarbons         |             |                |               |                |               |               |                |
| Benzo(a)pyrene                                            | 50-32-8          | 0.5         | mg/kg          | <0.5          | <0.5           | 1.2           | <0.5          | <0.5           |
| EP080/071: Total Petroleum Hydrocarbon                    | s                |             |                |               |                |               |               |                |
| C6 - C9 Fraction                                          |                  | 10          | mg/kg          | <10           | <10            | 13            | <10           | <10            |
| C10 - C14 Fraction                                        |                  | 50          | mg/kg          | <50           | <50            | <50           | <50           | <50            |
| C15 - C28 Fraction                                        |                  | 100         | mg/kg          | 470           | <100           | 4720          | 670           | 65000          |
| C29 - C36 Fraction                                        |                  | 100         | mg/kg          | 860           | <100           | 12100         | 1480          | 6740           |
| ^ C10 - C36 Fraction (sum)                                |                  | 50          | mg/kg          | 1330          | <50            | 16800         | 2150          | 71700          |
| EP080/071: Total Recoverable Hydrocarb                    | ons - NEPM 201   | 3 Fractio   | าร             |               |                |               |               |                |
| C6 - C10 Fraction                                         | C6_C10           | 10          | mg/kg          | <10           | <10            | <10           | <10           | <10            |

| Page       | : 12 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                | B016_0.0-0.2  | B015.5_0.5-0.6 | B014_0.0-0.2  | B014_0.5-0.6  | A003.5_0.0-0.2 |
|-----------------------------------------|-------------------|-------------|----------------|---------------|----------------|---------------|---------------|----------------|
|                                         | CI                | ient sampli | ng date / time | [15-Mar-2016] | [15-Mar-2016]  | [15-Mar-2016] | [15-Mar-2016] | [16-Mar-2016]  |
| Compound                                | CAS Number        | LOR         | Unit           | ES1606083-021 | ES1606083-022  | ES1606083-023 | ES1606083-024 | ES1606083-025  |
|                                         |                   |             |                | Result        | Result         | Result        | Result        | Result         |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio   | ns - Continued |               |                |               |               |                |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX       | 10          | mg/kg          | <10           | <10            | <10           | <10           | <10            |
| (F1)                                    |                   |             |                |               |                |               |               |                |
| >C10 - C16 Fraction                     |                   | 50          | mg/kg          | <50           | <50            | 140           | 50            | 5390           |
| >C16 - C34 Fraction                     |                   | 100         | mg/kg          | 1090          | <100           | 13000         | 1660          | 65800          |
| >C34 - C40 Fraction                     |                   | 100         | mg/kg          | 580           | <100           | 16400         | 1970          | 3840           |
| ^ >C10 - C40 Fraction (sum)             |                   | 50          | mg/kg          | 1670          | <50            | 29500         | 3680          | 75000          |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 50          | mg/kg          | <50           | <50            | 140           | 50            | 5390           |
| (F2)                                    |                   |             |                |               |                |               |               |                |
| EP080: BTEXN                            |                   |             |                |               |                |               |               |                |
| Benzene                                 | 71-43-2           | 0.2         | mg/kg          | <0.2          | <0.2           | <0.2          | <0.2          | <0.2           |
| Toluene                                 | 108-88-3          | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5          | <0.5          | <0.5           |
| Ethylbenzene                            | 100-41-4          | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5          | <0.5          | <0.5           |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5          | <0.5           | 0.5           | 0.7           | <0.5           |
| ortho-Xylene                            | 95-47-6           | 0.5         | mg/kg          | <0.5          | <0.5           | <0.5          | <0.5          | <0.5           |
| ^ Sum of BTEX                           |                   | 0.2         | mg/kg          | <0.2          | <0.2           | 0.5           | 0.7           | <0.2           |
| ^ Total Xylenes                         | 1330-20-7         | 0.5         | mg/kg          | <0.5          | <0.5           | 0.5           | 0.7           | <0.5           |
| Naphthalene                             | 91-20-3           | 1           | mg/kg          | <1            | <1             | <1            | <1            | <1             |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |             |                |               |                |               |               |                |
| Phenol-d6                               | 13127-88-3        | 0.5         | %              | 92.5          | 91.6           | 86.2          | 92.6          | 94.0           |
| 2-Chlorophenol-D4                       | 93951-73-6        | 0.5         | %              | 93.1          | 93.9           | 88.1          | 95.9          | 100            |
| 2.4.6-Tribromophenol                    | 118-79-6          | 0.5         | %              | 96.6          | 112            | 118           | 129           | 130            |
| EP075(SIM)T: PAH Surrogates             |                   |             |                |               |                |               |               |                |
| 2-Fluorobiphenyl                        | 321-60-8          | 0.5         | %              | 96.2          | 95.6           | 88.1          | 98.0          | 87.6           |
| Anthracene-d10                          | 1719-06-8         | 0.5         | %              | 109           | 114            | 100           | 112           | 98.1           |
| 4-Terphenyl-d14                         | 1718-51-0         | 0.5         | %              | 91.7          | 93.3           | 97.5          | 92.4          | 78.6           |
| EP080S: TPH(V)/BTEX Surrogates          |                   |             |                |               |                |               |               |                |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 0.2         | %              | 99.4          | 108            | 83.7          | 98.9          | 74.1           |
| Toluene-D8                              | 2037-26-5         | 0.2         | %              | 108           | 110            | 81.7          | 106           | 89.2           |
| 4-Bromofluorobenzene                    | 460-00-4          | 0.2         | %              | 106           | 111            | 79.0          | 104           | 78.0           |

| Page       | : 13 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                        | Client sample ID |                 |               | A006.5_0.0-0.2 | A007.5_0.0-0.2 | A008.5_0.0-0.2 | A013.5_0.0-0.2 |  |
|-----------------------------------------------------------|------------------|-----------------|---------------|----------------|----------------|----------------|----------------|--|
|                                                           | Client sampl     | ing date / time | [16-Mar-2016] | [16-Mar-2016]  | [16-Mar-2016]  | [16-Mar-2016]  | [16-Mar-2016]  |  |
| Compound CAS Number                                       | r LOR            | Unit            | ES1606083-026 | ES1606083-027  | ES1606083-028  | ES1606083-029  | ES1606083-031  |  |
|                                                           |                  |                 | Result        | Result         | Result         | Result         | Result         |  |
| EA055: Moisture Content                                   |                  |                 |               |                |                |                |                |  |
| Moisture Content (dried @ 103°C)                          | 1                | %               | <1.0          | 3.2            | 10.4           | 7.9            | 27.5           |  |
| EA200: AS 4964 - 2004 Identification of Asbestos in Soils |                  |                 |               |                |                |                |                |  |
| Asbestos Detected 1332-21                                 | 4 0.1            | g/kg            | No            | Yes            | No             | No             | Yes            |  |
| Asbestos Type 1332-21                                     | 4 -              |                 | -             | Am             | -              | -              | Am             |  |
| Sample weight (dry)                                       | 0.01             | g               | 684           | 553            | 510            | 387            | 287            |  |
| APPROVED IDENTIFIER:                                      |                  |                 | S.SPOONER     | G.MORGAN       | C.OWLER        | G.MORGAN       | C.OWLER        |  |
| EG005T: Total Metals by ICP-AES                           |                  |                 |               |                |                |                |                |  |
| Arsenic 7440-38                                           | 2 5              | mg/kg           | 6             | 6              | 8              | <5             | 9              |  |
| Barium 7440-39                                            | 3 10             | mg/kg           | <10           | 20             | 20             | 30             | 20             |  |
| Beryllium 7440-41                                         | 7 1              | mg/kg           | <1            | <1             | <1             | <1             | <1             |  |
| Boron 7440-42                                             | 8 50             | mg/kg           | <50           | <50            | <50            | <50            | <50            |  |
| Cadmium 7440-43                                           | 9 1              | mg/kg           | <1            | <1             | <1             | <1             | <1             |  |
| Chromium 7440-47                                          | 3 2              | mg/kg           | 36            | 98             | 40             | 32             | 45             |  |
| <b>Cobalt</b> 7440-48                                     | 4 2              | mg/kg           | 4             | 4              | <2             | 5              | 3              |  |
| <b>Copper</b> 7440-50                                     | 8 5              | mg/kg           | 94            | 95             | 40             | 47             | 34             |  |
| Lead 7439-92                                              | 1 5              | mg/kg           | 160           | 348            | 85             | 95             | 47             |  |
| Manganese 7439-96                                         | 5 5              | mg/kg           | 29            | 44             | 24             | 96             | 70             |  |
| Nickel 7440-02                                            | 0 2              | mg/kg           | 5             | 8              | 7              | 13             | 12             |  |
| Selenium 7782-49                                          | 2 5              | mg/kg           | <5            | <5             | <5             | <5             | <5             |  |
| Vanadium 7440-62                                          | 2 5              | mg/kg           | <5            | 6              | 8              | 13             | 10             |  |
| Zinc 7440-66                                              | 6 5              | mg/kg           | 713           | 932            | 206            | 911            | 415            |  |
| EG035T: Total Recoverable Mercury by FIMS                 |                  |                 |               |                |                |                |                |  |
| Mercury 7439-97                                           | 6 0.1            | mg/kg           | <0.1          | 0.1            | 0.2            | 0.3            | 0.5            |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons            |                  |                 |               |                |                |                |                |  |
| Benzo(a)pyrene 50-32                                      | 8 0.5            | mg/kg           | <0.5          | 17.2           | <4.0           | <0.5           | <4.0           |  |
| EP080/071: Total Petroleum Hydrocarbons                   |                  |                 |               |                |                |                |                |  |
| C6 - C9 Fraction                                          | 10               | mg/kg           | <10           | <10            | 12             | <10            | <10            |  |
| C10 - C14 Fraction                                        | 50               | mg/kg           | <50           | 870            | 2740           | 1090           | 630            |  |
| C15 - C28 Fraction                                        | 100              | mg/kg           | 2480          | 41000          | 98300          | 67800          | 61000          |  |
| C29 - C36 Fraction                                        | 100              | mg/kg           | 260           | 13300          | 4760           | 4940           | 15800          |  |
| ^ C10 - C36 Fraction (sum)                                | 50               | mg/kg           | 2740          | 55200          | 106000         | 73800          | 77400          |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2        | 013 Fractio      | ons             |               |                |                |                |                |  |
| C6 - C10 Fraction C6_C                                    | 0 10             | mg/kg           | <10           | <10            | 20             | <10            | <10            |  |

| Page       | 14 of 22                    |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                 | A005.5_0.0-0.2 | A006.5_0.0-0.2 | A007.5_0.0-0.2 | A008.5_0.0-0.2 | A013.5_0.0-0.2 |
|-----------------------------------------|-------------------|-------------|-----------------|----------------|----------------|----------------|----------------|----------------|
|                                         | Cl                | ient sampli | ing date / time | [16-Mar-2016]  | [16-Mar-2016]  | [16-Mar-2016]  | [16-Mar-2016]  | [16-Mar-2016]  |
| Compound                                | CAS Number        | LOR         | Unit            | ES1606083-026  | ES1606083-027  | ES1606083-028  | ES1606083-029  | ES1606083-031  |
|                                         |                   |             |                 | Result         | Result         | Result         | Result         | Result         |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio   | ns - Continued  |                |                |                |                |                |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX       | 10          | mg/kg           | <10            | <10            | 19             | <10            | <10            |
| (F1)                                    |                   |             |                 |                |                |                |                |                |
| >C10 - C16 Fraction                     |                   | 50          | mg/kg           | 100            | 2910           | 18100          | 7900           | 2440           |
| >C16 - C34 Fraction                     |                   | 100         | mg/kg           | 2590           | 49400          | 86600          | 64600          | 72100          |
| >C34 - C40 Fraction                     |                   | 100         | mg/kg           | <100           | 6830           | 2960           | 2830           | 9120           |
| ^ >C10 - C40 Fraction (sum)             |                   | 50          | mg/kg           | 2690           | 59100          | 108000         | 75300          | 83700          |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 50          | mg/kg           | 100            | 2910           | 18100          | 7900           | 2440           |
| (F2)                                    |                   |             |                 |                |                |                |                |                |
| EP080: BTEXN                            |                   |             |                 |                |                |                |                |                |
| Benzene                                 | 71-43-2           | 0.2         | mg/kg           | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           |
| Toluene                                 | 108-88-3          | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5           | <0.5           | <0.5           |
| Ethylbenzene                            | 100-41-4          | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5           | <0.5           | <0.5           |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 0.5         | mg/kg           | <0.5           | <0.5           | 1.6            | <0.5           | <0.5           |
| ortho-Xylene                            | 95-47-6           | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5           | <0.5           | <0.5           |
| ^ Sum of BTEX                           |                   | 0.2         | mg/kg           | <0.2           | <0.2           | 1.6            | <0.2           | <0.2           |
| ^ Total Xylenes                         | 1330-20-7         | 0.5         | mg/kg           | <0.5           | <0.5           | 1.6            | <0.5           | <0.5           |
| Naphthalene                             | 91-20-3           | 1           | mg/kg           | <1             | <1             | <1             | <1             | <1             |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |             |                 |                |                |                |                |                |
| Phenol-d6                               | 13127-88-3        | 0.5         | %               | 90.0           | 88.6           | 77.8           | 82.2           | 73.5           |
| 2-Chlorophenol-D4                       | 93951-73-6        | 0.5         | %               | 92.8           | 94.0           | 76.8           | 89.9           | 75.6           |
| 2.4.6-Tribromophenol                    | 118-79-6          | 0.5         | %               | 127            | 130            | 74.1           | 107            | 82.3           |
| EP075(SIM)T: PAH Surrogates             |                   |             |                 |                |                |                |                |                |
| 2-Fluorobiphenyl                        | 321-60-8          | 0.5         | %               | 93.5           | 85.7           | 75.2           | 85.6           | 69.5           |
| Anthracene-d10                          | 1719-06-8         | 0.5         | %               | 106            | 104            | 73.2           | 96.7           | 93.5           |
| 4-Terphenyl-d14                         | 1718-51-0         | 0.5         | %               | 90.1           | 115            | 87.7           | 80.9           | 115            |
| EP080S: TPH(V)/BTEX Surrogates          |                   |             |                 |                |                |                |                |                |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 0.2         | %               | 100            | 94.1           | 93.8           | 87.7           | 76.1           |
| Toluene-D8                              | 2037-26-5         | 0.2         | %               | 116            | 120            | 115            | 130            | 96.4           |
| 4-Bromofluorobenzene                    | 460-00-4          | 0.2         | %               | 108            | 106            | 103            | 106            | 80.1           |

| Page       | : 15 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                        | Client sample ID |             |                | A013.5_0.4-0.5 | A014.5_0.4-0.5 | C011_0.0-0.2  | C012_0.0-0.2  | QC150         |
|-----------------------------------------------------------|------------------|-------------|----------------|----------------|----------------|---------------|---------------|---------------|
|                                                           | Cl               | ient sampli | ng date / time | [16-Mar-2016]  | [16-Mar-2016]  | [16-Mar-2016] | [16-Mar-2016] | [14-Mar-2016] |
| Compound                                                  | CAS Number       | LOR         | Unit           | ES1606083-032  | ES1606083-033  | ES1606083-034 | ES1606083-035 | ES1606083-036 |
|                                                           |                  |             |                | Result         | Result         | Result        | Result        | Result        |
| EA055: Moisture Content                                   |                  |             |                |                |                |               |               |               |
| Moisture Content (dried @ 103°C)                          |                  | 1           | %              | 19.1           | 19.6           | <1.0          | 17.1          | 24.3          |
| EA200: AS 4964 - 2004 Identification of Asbestos in Soils |                  |             |                |                |                |               |               |               |
| Asbestos Detected                                         | 1332-21-4        | 0.1         | g/kg           | Yes            | Yes            | No            | No            |               |
| Asbestos Type                                             | 1332-21-4        | -           |                | Am             | Am + Cr        | -             | -             |               |
| Sample weight (dry)                                       |                  | 0.01        | g              | 761            | 832            | 555           | 532           |               |
| APPROVED IDENTIFIER:                                      |                  | -           |                | G.MORGAN       | G.MORGAN       | C.OWLER       | G.MORGAN      |               |
| EG005T: Total Metals by ICP-AES                           |                  |             |                |                |                |               |               |               |
| Arsenic                                                   | 7440-38-2        | 5           | mg/kg          | <5             | <5             | <5            | <5            | 8             |
| Barium                                                    | 7440-39-3        | 10          | mg/kg          | <10            | <10            | 60            | 10            | 90            |
| Beryllium                                                 | 7440-41-7        | 1           | mg/kg          | <1             | <1             | <1            | <1            | <1            |
| Boron                                                     | 7440-42-8        | 50          | mg/kg          | <50            | <50            | <50           | <50           | <50           |
| Cadmium                                                   | 7440-43-9        | 1           | mg/kg          | <1             | <1             | <1            | <1            | <1            |
| Chromium                                                  | 7440-47-3        | 2           | mg/kg          | 2              | 4              | 54            | 11            | 70            |
| Cobalt                                                    | 7440-48-4        | 2           | mg/kg          | <2             | <2             | 9             | 2             | 11            |
| Copper                                                    | 7440-50-8        | 5           | mg/kg          | <5             | <5             | 230           | 23            | 157           |
| Lead                                                      | 7439-92-1        | 5           | mg/kg          | <5             | 6              | 220           | 27            | 124           |
| Manganese                                                 | 7439-96-5        | 5           | mg/kg          | 11             | 6              | 66            | 40            | 164           |
| Nickel                                                    | 7440-02-0        | 2           | mg/kg          | <2             | <2             | 14            | 4             | 40            |
| Selenium                                                  | 7782-49-2        | 5           | mg/kg          | <5             | <5             | <5            | <5            | <5            |
| Vanadium                                                  | 7440-62-2        | 5           | mg/kg          | <5             | <5             | 9             | <5            | 29            |
| Zinc                                                      | 7440-66-6        | 5           | mg/kg          | <5             | 35             | 1800          | 303           | 2580          |
| EG035T: Total Recoverable Mercury by                      | FIMS             |             |                |                |                |               |               |               |
| Mercury                                                   | 7439-97-6        | 0.1         | mg/kg          | <0.1           | 0.1            | <0.1          | <0.1          | 14.7          |
| EP075(SIM)B: Polynuclear Aromatic Hyd                     | drocarbons       |             |                |                |                |               |               |               |
| Benzo(a)pyrene                                            | 50-32-8          | 0.5         | mg/kg          | <0.5           | <0.5           | <0.5          | <0.5          | <4.0          |
| EP080/071: Total Petroleum Hydrocarbo                     | ons              |             |                |                |                |               |               |               |
| C6 - C9 Fraction                                          |                  | 10          | mg/kg          | <10            | <10            | <10           | <10           | <10           |
| C10 - C14 Fraction                                        |                  | 50          | mg/kg          | <50            | <50            | <50           | <50           | <50           |
| C15 - C28 Fraction                                        |                  | 100         | mg/kg          | 230            | 750            | 30800         | 1960          | 107000        |
| C29 - C36 Fraction                                        |                  | 100         | mg/kg          | <100           | <100           | 35000         | 3260          | 41300         |
| ^ C10 - C36 Fraction (sum)                                |                  | 50          | mg/kg          | 230            | 750            | 65800         | 5220          | 148000        |
| EP080/071: Total Recoverable Hydrocar                     | bons - NEPM 201  | 3 Fractio   | าร             |                |                |               |               |               |
| C6 - C10 Fraction                                         | C6_C10           | 10          | mg/kg          | <10            | <10            | <10           | <10           | <10           |

| Page       | 16 of 22                    |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                 | A013.5_0.4-0.5 | A014.5_0.4-0.5 | C011_0.0-0.2  | C012_0.0-0.2  | QC150         |
|-----------------------------------------|-------------------|-------------|-----------------|----------------|----------------|---------------|---------------|---------------|
|                                         | Cl                | ient sampli | ing date / time | [16-Mar-2016]  | [16-Mar-2016]  | [16-Mar-2016] | [16-Mar-2016] | [14-Mar-2016] |
| Compound                                | CAS Number        | LOR         | Unit            | ES1606083-032  | ES1606083-033  | ES1606083-034 | ES1606083-035 | ES1606083-036 |
|                                         |                   |             |                 | Result         | Result         | Result        | Result        | Result        |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio   | ns - Continued  |                |                |               |               |               |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX       | 10          | mg/kg           | <10            | <10            | <10           | <10           | <10           |
| (F1)                                    |                   |             |                 |                |                |               |               |               |
| >C10 - C16 Fraction                     |                   | 50          | mg/kg           | 70             | 280            | 270           | <50           | 14200         |
| >C16 - C34 Fraction                     |                   | 100         | mg/kg           | 200            | 530            | 59300         | 4430          | 129000        |
| >C34 - C40 Fraction                     |                   | 100         | mg/kg           | <100           | <100           | 19600         | 1700          | 19800         |
| ^ >C10 - C40 Fraction (sum)             |                   | 50          | mg/kg           | 270            | 810            | 79200         | 6130          | 163000        |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 50          | mg/kg           | 70             | 280            | 270           | <50           | 14200         |
| (F2)                                    |                   |             |                 |                |                |               |               |               |
| EP080: BTEXN                            |                   |             |                 |                |                |               |               |               |
| Benzene                                 | 71-43-2           | 0.2         | mg/kg           | <0.2           | <0.2           | <0.2          | <0.2          | <0.2          |
| Toluene                                 | 108-88-3          | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5          | <0.5          | <0.5          |
| Ethylbenzene                            | 100-41-4          | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5          | <0.5          | <0.5          |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5          | <0.5          | <0.5          |
| ortho-Xylene                            | 95-47-6           | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5          | <0.5          | <0.5          |
| ^ Sum of BTEX                           |                   | 0.2         | mg/kg           | <0.2           | <0.2           | <0.2          | <0.2          | <0.2          |
| ^ Total Xylenes                         | 1330-20-7         | 0.5         | mg/kg           | <0.5           | <0.5           | <0.5          | <0.5          | <0.5          |
| Naphthalene                             | 91-20-3           | 1           | mg/kg           | <1             | <1             | <1            | <1            | <1            |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |             |                 |                |                |               |               |               |
| Phenol-d6                               | 13127-88-3        | 0.5         | %               | 85.9           | 92.5           | 93.9          | 107           | 73.7          |
| 2-Chlorophenol-D4                       | 93951-73-6        | 0.5         | %               | 95.0           | 99.7           | 99.1          | 89.4          | 70.8          |
| 2.4.6-Tribromophenol                    | 118-79-6          | 0.5         | %               | 126            | 124            | 132           | 126           | 83.0          |
| EP075(SIM)T: PAH Surrogates             |                   |             |                 |                |                |               |               |               |
| 2-Fluorobiphenyl                        | 321-60-8          | 0.5         | %               | 93.3           | 95.3           | 88.8          | 95.0          | 66.4          |
| Anthracene-d10                          | 1719-06-8         | 0.5         | %               | 109            | 112            | 106           | 111           | 83.8          |
| 4-Terphenyl-d14                         | 1718-51-0         | 0.5         | %               | 112            | 116            | 125           | 114           | 70.3          |
| EP080S: TPH(V)/BTEX Surrogates          |                   |             |                 |                |                |               |               |               |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 0.2         | %               | 77.8           | 96.2           | 102           | 93.0          | 86.6          |
| Toluene-D8                              | 2037-26-5         | 0.2         | %               | 100            | 117            | 128           | 112           | 101           |
| 4-Bromofluorobenzene                    | 460-00-4          | 0.2         | %               | 87.9           | 116            | 120           | 110           | 88.3          |

| Page       | : 17 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      |                   | Clie        | ent sample ID  | QC153         | QC152         | QC154         | QC157         |        |
|-----------------------------------------|-------------------|-------------|----------------|---------------|---------------|---------------|---------------|--------|
|                                         | Cl                | ient sampli | ng date / time | [14-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [16-Mar-2016] |        |
| Compound                                | CAS Number        | LOR         | Unit           | ES1606083-037 | ES1606083-038 | ES1606083-039 | ES1606083-041 |        |
|                                         |                   |             |                | Result        | Result        | Result        | Result        | Result |
| EA055: Moisture Content                 |                   |             |                |               |               |               |               |        |
| Moisture Content (dried @ 103°C)        |                   | 1           | %              |               | 45.9          | 19.3          | 43.1          |        |
| EA200: AS 4964 - 2004 Identification of | Asbestos in Soils | ;           |                |               |               |               |               |        |
| Asbestos Detected                       | 1332-21-4         | 0.1         | g/kg           |               |               |               |               |        |
| Asbestos Type                           | 1332-21-4         | -           |                |               |               |               |               |        |
| Sample weight (dry)                     |                   | 0.01        | g              |               |               |               |               |        |
| APPROVED IDENTIFIER:                    |                   | -           |                |               |               |               |               |        |
| EG005T: Total Metals by ICP-AES         |                   |             |                |               |               |               |               |        |
| Arsenic                                 | 7440-38-2         | 5           | mg/kg          |               | 5             | <5            | 11            |        |
| Barium                                  | 7440-39-3         | 10          | mg/kg          |               | 50            | <10           | 40            |        |
| Beryllium                               | 7440-41-7         | 1           | mg/kg          |               | <1            | <1            | <1            |        |
| Boron                                   | 7440-42-8         | 50          | mg/kg          |               | <50           | <50           | <50           |        |
| Cadmium                                 | 7440-43-9         | 1           | mg/kg          |               | <1            | <1            | <1            |        |
| Chromium                                | 7440-47-3         | 2           | mg/kg          |               | 37            | <2            | 53            |        |
| Cobalt                                  | 7440-48-4         | 2           | mg/kg          |               | 10            | <2            | 5             |        |
| Copper                                  | 7440-50-8         | 5           | mg/kg          |               | 58            | <5            | 46            |        |
| Lead                                    | 7439-92-1         | 5           | mg/kg          |               | 68            | <5            | 58            |        |
| Manganese                               | 7439-96-5         | 5           | mg/kg          |               | 219           | <5            | 132           |        |
| Nickel                                  | 7440-02-0         | 2           | mg/kg          |               | 47            | <2            | 24            |        |
| Selenium                                | 7782-49-2         | 5           | mg/kg          |               | <5            | <5            | <5            |        |
| Vanadium                                | 7440-62-2         | 5           | mg/kg          |               | 26            | <5            | 14            |        |
| Zinc                                    | 7440-66-6         | 5           | mg/kg          |               | 1530          | 62            | 581           |        |
| EG035T: Total Recoverable Mercury by    | FIMS              |             |                |               |               |               |               |        |
| Mercury                                 | 7439-97-6         | 0.1         | mg/kg          |               | 0.4           | <0.1          | 0.7           |        |
| EP075(SIM)B: Polynuclear Aromatic Hy    | drocarbons        |             |                |               |               |               |               |        |
| Benzo(a)pyrene                          | 50-32-8           | 0.5         | mg/kg          |               | <0.5          | <0.5          | <4.0          |        |
| EP080/071: Total Petroleum Hydrocarbo   | ons               |             |                |               |               |               |               |        |
| C6 - C9 Fraction                        |                   | 10          | mg/kg          | <10           | <10           | <10           | <10           |        |
| C10 - C14 Fraction                      |                   | 50          | mg/kg          |               | <50           | <50           | <50           |        |
| C15 - C28 Fraction                      |                   | 100         | mg/kg          |               | 4610          | 1950          | 120000        |        |
| C29 - C36 Fraction                      |                   | 100         | mg/kg          |               | 2940          | 4290          | 28400         |        |
| ^ C10 - C36 Fraction (sum)              |                   | 50          | mg/kg          |               | 7550          | 6240          | 148000        |        |
| EP080/071: Total Recoverable Hydroca    | rbons - NEPM 201  | 3 Fractio   | ns             |               |               |               |               |        |
| C6 - C10 Fraction                       | C6_C10            | 10          | mg/kg          | <10           | <10           | <10           | <10           |        |

| Page       | : 18 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      | Client sample ID  |             |                | QC153         | QC152         | QC154         | QC157         |        |
|-----------------------------------------|-------------------|-------------|----------------|---------------|---------------|---------------|---------------|--------|
|                                         | Cl                | ient sampli | ng date / time | [14-Mar-2016] | [15-Mar-2016] | [15-Mar-2016] | [16-Mar-2016] |        |
| Compound                                | CAS Number        | LOR         | Unit           | ES1606083-037 | ES1606083-038 | ES1606083-039 | ES1606083-041 |        |
|                                         |                   |             |                | Result        | Result        | Result        | Result        | Result |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio   | ns - Continued |               |               |               |               |        |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX       | 10          | mg/kg          | <10           | <10           | <10           | <10           |        |
| (F1)                                    |                   |             |                |               |               |               |               |        |
| >C10 - C16 Fraction                     |                   | 50          | mg/kg          |               | 210           | 110           | 3200          |        |
| >C16 - C34 Fraction                     |                   | 100         | mg/kg          |               | 6610          | 4860          | 140000        |        |
| >C34 - C40 Fraction                     |                   | 100         | mg/kg          |               | 1760          | 5660          | 16400         |        |
| ^ >C10 - C40 Fraction (sum)             |                   | 50          | mg/kg          |               | 8580          | 10600         | 160000        |        |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 50          | mg/kg          |               | 210           | 110           | 3200          |        |
| (F2)                                    |                   |             |                |               |               |               |               |        |
| EP080: BTEXN                            |                   |             |                |               |               |               |               |        |
| Benzene                                 | 71-43-2           | 0.2         | mg/kg          | <0.2          | <0.2          | <0.2          | <0.2          |        |
| Toluene                                 | 108-88-3          | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          |        |
| Ethylbenzene                            | 100-41-4          | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          |        |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          |        |
| ortho-Xylene                            | 95-47-6           | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          |        |
| ^ Sum of BTEX                           |                   | 0.2         | mg/kg          | <0.2          | <0.2          | <0.2          | <0.2          |        |
| ^ Total Xylenes                         | 1330-20-7         | 0.5         | mg/kg          | <0.5          | <0.5          | <0.5          | <0.5          |        |
| Naphthalene                             | 91-20-3           | 1           | mg/kg          | <1            | <1            | <1            | <1            |        |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |             |                |               |               |               |               |        |
| Phenol-d6                               | 13127-88-3        | 0.5         | %              |               | 82.4          | 85.9          | 90.2          |        |
| 2-Chlorophenol-D4                       | 93951-73-6        | 0.5         | %              |               | 89.7          | 91.8          | 89.6          |        |
| 2.4.6-Tribromophenol                    | 118-79-6          | 0.5         | %              |               | 135           | 126           | 87.3          |        |
| EP075(SIM)T: PAH Surrogates             |                   |             |                |               |               |               |               |        |
| 2-Fluorobiphenyl                        | 321-60-8          | 0.5         | %              |               | 94.3          | 83.8          | 62.6          |        |
| Anthracene-d10                          | 1719-06-8         | 0.5         | %              |               | 111           | 111           | 80.1          |        |
| 4-Terphenyl-d14                         | 1718-51-0         | 0.5         | %              |               | 129           | 133           | 91.4          |        |
| EP080S: TPH(V)/BTEX Surrogates          |                   |             |                |               |               |               |               |        |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 0.2         | %              | 92.4          | 73.6          | 93.9          | 84.6          |        |
| Toluene-D8                              | 2037-26-5         | 0.2         | %              | 109           | 89.8          | 119           | 106           |        |
| 4-Bromofluorobenzene                    | 460-00-4          | 0.2         | %              | 110           | 88.0          | 115           | 91.6          |        |

| Page       | : 19 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: WATER<br>(Matrix: WATER)    | Client sample ID |              | QC156          | QC161         | QC162         |               |        |        |
|-----------------------------------------|------------------|--------------|----------------|---------------|---------------|---------------|--------|--------|
|                                         | Cl               | ient samplii | ng date / time | [15-Mar-2016] | [16-Mar-2016] | [16-Mar-2016] |        |        |
| Compound                                | CAS Number       | LOR          | Unit           | ES1606083-040 | ES1606083-042 | ES1606083-043 |        |        |
|                                         |                  |              |                | Result        | Result        | Result        | Result | Result |
| EG020F: Dissolved Metals by ICP-MS      |                  |              |                |               |               |               |        |        |
| Arsenic                                 | 7440-38-2        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Boron                                   | 7440-42-8        | 0.05         | mg/L           | <0.05         | <0.05         |               |        |        |
| Barium                                  | 7440-39-3        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Beryllium                               | 7440-41-7        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Cadmium                                 | 7440-43-9        | 0.0001       | mg/L           | <0.0001       | <0.0001       |               |        |        |
| Cobalt                                  | 7440-48-4        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Chromium                                | 7440-47-3        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Copper                                  | 7440-50-8        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Manganese                               | 7439-96-5        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Nickel                                  | 7440-02-0        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Lead                                    | 7439-92-1        | 0.001        | mg/L           | <0.001        | <0.001        |               |        |        |
| Selenium                                | 7782-49-2        | 0.01         | mg/L           | <0.01         | <0.01         |               |        |        |
| Vanadium                                | 7440-62-2        | 0.01         | mg/L           | <0.01         | <0.01         |               |        |        |
| Zinc                                    | 7440-66-6        | 0.005        | mg/L           | <0.005        | <0.005        |               |        |        |
| EG035F: Dissolved Mercury by FIMS       |                  |              |                |               |               |               |        |        |
| Mercury                                 | 7439-97-6        | 0.0001       | mg/L           | <0.0001       | <0.0001       |               |        |        |
| EP075(SIM)B: Polynuclear Aromatic Hyd   | Irocarbons       |              |                |               |               |               |        |        |
| Benzo(a)pyrene                          | 50-32-8          | 0.5          | µg/L           | <0.5          | <0.5          |               |        |        |
| EP080/071: Total Petroleum Hydrocarbo   | ns               |              |                |               |               |               |        |        |
| C6 - C9 Fraction                        |                  | 20           | µg/L           | <20           | <20           | <20           |        |        |
| C10 - C14 Fraction                      |                  | 50           | μg/L           | <50           | <50           |               |        |        |
| C15 - C28 Fraction                      |                  | 100          | µg/L           | <100          | <100          |               |        |        |
| C29 - C36 Fraction                      |                  | 50           | µg/L           | <50           | <50           |               |        |        |
| ^ C10 - C36 Fraction (sum)              |                  | 50           | µg/L           | <50           | <50           |               |        |        |
| EP080/071: Total Recoverable Hydrocarl  | bons - NEPM 201  | 3 Fractio    | າຣ             |               |               |               |        |        |
| C6 - C10 Fraction                       | C6_C10           | 20           | µg/L           | <20           | <20           | <20           |        |        |
| ^ C6 - C10 Fraction minus BTEX          | C6_C10-BTEX      | 20           | µg/L           | <20           | <20           | <20           |        |        |
| (F1)                                    |                  |              |                |               |               |               |        |        |
| >C10 - C16 Fraction                     |                  | 100          | µg/L           | <100          | <100          |               |        |        |
| >C16 - C34 Fraction                     |                  | 100          | µg/L           | <100          | <100          |               |        |        |
| >C34 - C40 Fraction                     |                  | 100          | µg/L           | <100          | <100          |               |        |        |
| ^ >C10 - C40 Fraction (sum)             |                  | 100          | µg/L           | <100          | <100          |               |        |        |
| ^ >C10 - C16 Fraction minus Naphthalene |                  | 100          | µg/L           | <100          | <100          |               |        |        |
| (F2)                                    |                  |              |                |               |               |               |        |        |

| Page       | : 20 of 22                  |
|------------|-----------------------------|
| Work Order | : ES1606083                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: WATER<br>(Matrix: WATER) | -Matrix: WATER Client sample ID atrix: WATER) |             |                | QC156         | QC161         | QC162         |        |        |
|--------------------------------------|-----------------------------------------------|-------------|----------------|---------------|---------------|---------------|--------|--------|
|                                      | Cli                                           | ient sampli | ng date / time | [15-Mar-2016] | [16-Mar-2016] | [16-Mar-2016] |        |        |
| Compound                             | CAS Number                                    | LOR         | Unit           | ES1606083-040 | ES1606083-042 | ES1606083-043 |        |        |
|                                      |                                               |             |                | Result        | Result        | Result        | Result | Result |
| EP080: BTEXN                         |                                               |             |                |               |               |               |        |        |
| Benzene                              | 71-43-2                                       | 1           | µg/L           | <1            | <1            | <1            |        |        |
| Toluene                              | 108-88-3                                      | 2           | µg/L           | <2            | <2            | <2            |        |        |
| Ethylbenzene                         | 100-41-4                                      | 2           | µg/L           | <2            | <2            | <2            |        |        |
| meta- & para-Xylene                  | 108-38-3 106-42-3                             | 2           | µg/L           | <2            | <2            | <2            |        |        |
| ortho-Xylene                         | 95-47-6                                       | 2           | µg/L           | <2            | <2            | <2            |        |        |
| ^ Total Xylenes                      | 1330-20-7                                     | 2           | µg/L           | <2            | <2            | <2            |        |        |
| ^ Sum of BTEX                        |                                               | 1           | µg/L           | <1            | <1            | <1            |        |        |
| Naphthalene                          | 91-20-3                                       | 5           | µg/L           | <5            | <5            | <5            |        |        |
| EP075(SIM)S: Phenolic Compound S     | Surrogates                                    |             |                |               |               |               |        |        |
| Phenol-d6                            | 13127-88-3                                    | 1           | %              | 24.8          | 21.5          |               |        |        |
| 2-Chlorophenol-D4                    | 93951-73-6                                    | 1           | %              | 45.0          | 40.8          |               |        |        |
| 2.4.6-Tribromophenol                 | 118-79-6                                      | 1           | %              | 23.8          | 21.9          |               |        |        |
| EP075(SIM)T: PAH Surrogates          |                                               |             |                |               |               |               |        |        |
| 2-Fluorobiphenyl                     | 321-60-8                                      | 1           | %              | 77.4          | 71.1          |               |        |        |
| Anthracene-d10                       | 1719-06-8                                     | 1           | %              | 82.9          | 78.5          |               |        |        |
| 4-Terphenyl-d14                      | 1718-51-0                                     | 1           | %              | 82.3          | 73.0          |               |        |        |
| EP080S: TPH(V)/BTEX Surrogates       |                                               |             |                |               |               |               |        |        |
| 1.2-Dichloroethane-D4                | 17060-07-0                                    | 2           | %              | 101           | 103           | 106           |        |        |
| Toluene-D8                           | 2037-26-5                                     | 2           | %              | 100           | 101           | 106           |        |        |
| 4-Bromofluorobenzene                 | 460-00-4                                      | 2           | %              | 95.7          | 98.3          | 100           |        |        |



#### **Descriptive Results**

#### Sub-Matrix: SOIL

| Method: Compound                                          | Client sample ID - Client sampling date / time | Analytical Results                                                                                               |  |  |  |  |  |  |
|-----------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| EA200: AS 4964 - 2004 Identification of Asbestos in Soils |                                                |                                                                                                                  |  |  |  |  |  |  |
| EA200: Description                                        | B001_0.0-0.2 - [14-Mar-2016]                   | Mid grey clay soil with several friable asbestos fibre bundles approx 3 x 1 x 1mm                                |  |  |  |  |  |  |
| EA200: Description                                        | B003.5_0.0-0.2 - [14-Mar-2016]                 | Mid grey clay soil with several friable asbestos fibre bundles approx 3 x 1 x 0.5mm                              |  |  |  |  |  |  |
| EA200: Description                                        | B007.5_0.0-0.2 - [14-Mar-2016]                 | Dark brown sandy soil with several pieces of friable asbestos insulation material approx 35 x 25 x 3mm           |  |  |  |  |  |  |
| EA200: Description                                        | B009.5_0.0-0.2 - [14-Mar-2016]                 | Mid brown clay soil containing trace asbestos fibres plus several pieces of friable asbestos insulation material |  |  |  |  |  |  |
|                                                           |                                                | approx 4 x 3 x 2mm                                                                                               |  |  |  |  |  |  |
| EA200: Description                                        | B010.5_0.0-0.2 - [14-Mar-2016]                 | Mid grey soil with several friable asbestos fibre bundles approx 1 x 0.5 x 0.5mm                                 |  |  |  |  |  |  |
| EA200: Description                                        | B012.5_0.0-0.2 - [14-Mar-2016]                 | Mid brown sandy soil with grey rocks                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | B036_0.0-0.2 - [15-Mar-2016]                   | Mid brown clay soil with one loose bundle of friable asbestos fibres approx 2 x 1 x 0.5mm                        |  |  |  |  |  |  |
| EA200: Description                                        | B036_0.5-0.6 - [15-Mar-2016]                   | Pale brown sandy soil with several bundles of friable asbestos fibres approx 2 x 1 x 1mm                         |  |  |  |  |  |  |
| EA200: Description                                        | B035_0.0-0.2 - [15-Mar-2016]                   | Mid brown sandy soil                                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | B035_0.5-0.6 - [15-Mar-2016]                   | Mid grey sandy soil with grey rocks                                                                              |  |  |  |  |  |  |
| EA200: Description                                        | B034_0.0-0.2 - [15-Mar-2016]                   | Mid brown sandy soil with grey rocks                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | B034_0.5-0.6 - [15-Mar-2016]                   | Pale brown sandy soil with tar like grains                                                                       |  |  |  |  |  |  |
| EA200: Description                                        | B033_0.0-0.2 - [15-Mar-2016]                   | Pale brown sandy soil                                                                                            |  |  |  |  |  |  |
| EA200: Description                                        | B033_0.5-0.6 - [15-Mar-2016]                   | Mid brown sandy soil                                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | B032_0.0-0.2 - [15-Mar-2016]                   | Mid brown clay soil with several pieces of friable asbestos insulation material approx 4 x 4 x 2mm               |  |  |  |  |  |  |
| EA200: Description                                        | B032_0.5-0.6 - [15-Mar-2016]                   | Mid brown sandy soil with grey rocks                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | B031_0.0-0.2 - [15-Mar-2016]                   | Mid brown sandy soil with grey rocks                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | B031_0.5-0.6 - [15-Mar-2016]                   | Cream sandy soil                                                                                                 |  |  |  |  |  |  |
| EA200: Description                                        | B016.5_0.0-0.2 - [15-Mar-2016]                 | Pale grey sandy soil                                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | B016.5_0.5-0.6 - [15-Mar-2016]                 | Mid grey sandy soil with grey rocks                                                                              |  |  |  |  |  |  |
| EA200: Description                                        | B016_0.0-0.2 - [15-Mar-2016]                   | Pale brown sandy soil with grey rocks plus two friable asbestos fibre bundles approx 3 x 1 x 0.5mm               |  |  |  |  |  |  |
| EA200: Description                                        | B015.5_0.5-0.6 - [15-Mar-2016]                 | Mid grey sandy soil with grey rocks                                                                              |  |  |  |  |  |  |
| EA200: Description                                        | B014_0.0-0.2 - [15-Mar-2016]                   | Mid brown sandy soil coated in tar like material                                                                 |  |  |  |  |  |  |
| EA200: Description                                        | B014_0.5-0.6 - [15-Mar-2016]                   | Mid grey sandy soil                                                                                              |  |  |  |  |  |  |
| EA200: Description                                        | A003.5_0.0-0.2 - [16-Mar-2016]                 | Mid brown sandy soil                                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | A005.5_0.0-0.2 - [16-Mar-2016]                 | Mid brown sandy soil with grey rocks                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | A006.5_0.0-0.2 - [16-Mar-2016]                 | Mid brown sandy soil with several bundles of friable asbestos fibres approx 3 x 1 x 1mm                          |  |  |  |  |  |  |
| EA200: Description                                        | A007.5_0.0-0.2 - [16-Mar-2016]                 | Mid grey sandy soil coated with tar like residue                                                                 |  |  |  |  |  |  |
| EA200: Description                                        | A008.5_0.0-0.2 - [16-Mar-2016]                 | Mid brown sandy soil coated in tar like material                                                                 |  |  |  |  |  |  |
| EA200: Description                                        | A013.5_0.0-0.2 - [16-Mar-2016]                 | Mid grey sandy soil with several friable asbestos fibre bundles approx 4 x 1 x 1mm                               |  |  |  |  |  |  |
| EA200: Description                                        | A013.5_0.4-0.5 - [16-Mar-2016]                 | Mid grey-brown sandy soil with several bundles of friable asbestos fibres approx 3 x 1 x 1mm                     |  |  |  |  |  |  |
| EA200: Description                                        | A014.5_0.4-0.5 - [16-Mar-2016]                 | Mid brown sandy soil with several pieces of friable asbestos insulation material approx 30 x 30 x 3mm plus       |  |  |  |  |  |  |
|                                                           |                                                | several bundles of friable asbestos fibres approx 3 x 1 x 1mm                                                    |  |  |  |  |  |  |
| EA200: Description                                        | C011_0.0-0.2 - [16-Mar-2016]                   | Mid brown sandy soil                                                                                             |  |  |  |  |  |  |
| EA200: Description                                        | C012_0.0-0.2 - [16-Mar-2016]                   | Mid brown sandy soil                                                                                             |  |  |  |  |  |  |



#### Surrogate Control Limits

|            | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / Limits (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS Number | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13127-88-3 | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 93951-73-6 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 118-79-6   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 321-60-8   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1719-06-8  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1718-51-0  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17060-07-0 | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2037-26-5  | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 460-00-4   | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / Limits (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CAS Number | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13127-88-3 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 93951-73-6 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 118-79-6   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 321-60-8   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1719-06-8  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1718-51-0  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17060-07-0 | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2037-26-5  | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 460-00-4   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | CAS Number         13127-88-3         93951-73-6         118-79-6         321-60-8         1719-06-8         1718-51-0         2037-26-5         460-00-4         CAS Number         13127-88-3         93951-73-6         13127-88-3         93951-73-6         118-79-6         2037-26-5         460-00-4         2037-26-5         13127-88-3         93951-73-6         118-79-6         321-60-8         1719-06-8         1719-06-8         1718-51-0         17060-07-0         2037-26-5         460-00-4 | Recovery           CAS Number         Low           13127-88-3         63           93951-73-6         66           118-79-6         40           321-60-8         70           1719-06-8         66           1718-51-0         65           17060-07-0         73           2037-26-5         74           460-00-4         72           Recovery           CAS Number         Low           13127-88-3           10         93951-73-6           14         118-79-6           93951-73-6         14           118-79-6         17           321-60-8         20           1719-06-8         27           1718-51-0         32           1779-06-8         77           1718-51-0         32           17060-07-0         71           2037-26-5         79           460-00-4         70 |



#### **Q** ALITY CONTROL REPORT

| Work Order              | : ES1606083                                      | Page                    | : 1 of 15                                             |
|-------------------------|--------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : AECOM Australia Pty Ltd                        | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | MR STEPHEN RANDALL                               | Contact                 | : Loren Schiavon                                      |
| Address                 | : LEVEL 21, 420 GEORGE STREET<br>SYDNEY NSW 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : 02 8934 0000                                   | Telephone               | : +61 2 8784 8503                                     |
| Project                 | : 60488804/1.2 Caltex Kurnell                    | Date Samples Received   | : 17-Mar-2016                                         |
| Order number            | : 60488804/1.2                                   | Date Analysis Commenced | : 18-Mar-2016                                         |
| C-O-C number            | :                                                | Issue Date              | : 30-Mar-2016                                         |
| Sampler                 | : KATE PIGRAM                                    |                         | NATA                                                  |
| Site                    | :                                                |                         |                                                       |
| Quote number            | :                                                |                         | NATA Accredited Laboratory 825                        |
| No. of samples received | : 42                                             |                         | Accredited for compliance with                        |
| No. of samples analysed | : 42                                             |                         | ISO/IEC 17025. ACCREDITATION                          |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- □ Laboratory Duplicate (DUP) Report □ Relative Percentage Difference (RPD) and Acceptance Limits
- I Method Blank (MB) and Laboratory Control Spike (LCS) Report Recovery and Acceptance Limits
- Matrix Spike (MS) Report Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position                 | Accreditation Category                   |
|-------------------|--------------------------|------------------------------------------|
| Celine Conceicao  | Senior Spectroscopist    | Sydney Inorganics, Smithfield, NSW       |
| Christopher Owler | Team Leader - Asbestos   | Newcastle - Asbestos, Mayfield West, NSW |
| Edwandy Fadjar    | Organic Coordinator      | Sydney Inorganics, Smithfield, NSW       |
| Edwandy Fadjar    | Organic Coordinator      | Sydney Organics, Smithfield, NSW         |
| Sanjeshni Jyoti   | Senior Chemist Volatiles | Sydney Organics, Smithfield, NSW         |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit Result between 10 and 20 times LOR: 0% - 50% Result = 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL                         |                           |                                             |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |
|------------------------------------------|---------------------------|---------------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID                     | Client sample ID          | Method: Compound                            | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA055: Moisture Content (QC Lot: 400211) |                           |                                             |            |                                   |       |                 |                  |         |                     |  |
| ES1606073-004                            | Anonymous                 | EA055-103: Moisture Content (dried D 103 C) |            | 1                                 | %     | 21.4            | 22.2             | 3.58    | 0% - 20%            |  |
| ES1606083-004                            | B009.5_0.0-0.2            | EA055-103: Moisture Content (dried D 103 C) |            | 1                                 | %     | 46.4            | 48.2             | 3.76    | 0% - 20%            |  |
| EA055: Moisture Content (QC Lot: 400212) |                           |                                             |            |                                   |       |                 |                  |         |                     |  |
| ES1606083-013                            | B033_0.0-0.2              | EA055-103: Moisture Content (dried D 103 C) |            | 1                                 | %     | 22.9            | 26.0             | 12.7    | 0% - 20%            |  |
| ES1606083-024                            | B014_0.5-0.6              | EA055-103: Moisture Content (dried D 103 C) |            | 1                                 | %     | 19.3            | 19.6             | 1.23    | 0% - 50%            |  |
| EA055: Moisture Content (QC Lot: 400213) |                           |                                             |            |                                   |       |                 |                  |         |                     |  |
| ES1606083-034                            | C011_0.0-0.2              | EA055-103: Moisture Content (dried D 103 C) |            | 1                                 | %     | <1.0            | <1.0             | 0.00    | No Limit            |  |
| ES1606101-004                            | Anonymous                 | EA055-103: Moisture Content (dried D 103 C) |            | 1                                 | %     | 16.1            | 19.5             | 19.2    | 0% - 50%            |  |
| EG005T: Total Metal                      | s by ICP-AES (QC Lot: 402 | 100)                                        |            |                                   |       |                 |                  |         |                     |  |
| ES1606016-003                            | Anonymous                 | EG005T: Beryllium                           | 7440-41-7  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Cadmium                             | 7440-43-9  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Barium                              | 7440-39-3  | 10                                | mg/kg | 20              | 20               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Chromium                            | 7440-47-3  | 2                                 | mg/kg | <2              | <2               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Cobalt                              | 7440-48-4  | 2                                 | mg/kg | 11              | 13               | 22.4    | No Limit            |  |
|                                          |                           | EG005T: Nickel                              | 7440-02-0  | 2                                 | mg/kg | <2              | 2                | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Arsenic                             | 7440-38-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Copper                              | 7440-50-8  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Lead                                | 7439-92-1  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Manganese                           | 7439-96-5  | 5                                 | mg/kg | 173             | 178              | 2.80    | 0% - 20%            |  |
|                                          |                           | EG005T: Selenium                            | 7782-49-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Vanadium                            | 7440-62-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |  |
|                                          |                           | EG005T: Zinc                                | 7440-66-6  | 5                                 | mg/kg | 8               | 10               | 24.6    | No Limit            |  |
|                                          |                           | EG005T: Boron                               | 7440-42-8  | 50                                | mg/kg | <50             | <50              | 0.00    | No Limit            |  |
| ES1606083-009                            | B035_0.0-0.2              | EG005T: Beryllium                           | 7440-41-7  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |  |

| Page       | : 3 of 15                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL     |                       |                       |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|-----------------------|-----------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound      | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EG005T: Total Metal  | s by ICP-AES (QC Lot: | : 402100) - continued |            |                                   |       |                 |                  |         |                     |
| ES1606083-009        | B035_0.0-0.2          | EG005T: Cadmium       | 7440-43-9  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
|                      |                       | EG005T: Barium        | 7440-39-3  | 10                                | mg/kg | 20              | 20               | 0.00    | No Limit            |
|                      |                       | EG005T: Chromium      | 7440-47-3  | 2                                 | mg/kg | 20              | 19               | 7.75    | 0% - 50%            |
|                      |                       | EG005T: Cobalt        | 7440-48-4  | 2                                 | mg/kg | 7               | 6                | 0.00    | No Limit            |
|                      |                       | EG005T: Nickel        | 7440-02-0  | 2                                 | mg/kg | 19              | 17               | 7.36    | No Limit            |
|                      |                       | EG005T: Arsenic       | 7440-38-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                       | EG005T: Copper        | 7440-50-8  | 5                                 | mg/kg | 118             | 138              | 15.4    | 0% - 20%            |
|                      |                       | EG005T: Lead          | 7439-92-1  | 5                                 | mg/kg | 234             | 209              | 11.4    | 0% - 20%            |
|                      |                       | EG005T: Manganese     | 7439-96-5  | 5                                 | mg/kg | 138             | 125              | 10.4    | 0% - 20%            |
|                      |                       | EG005T: Selenium      | 7782-49-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                       | EG005T: Vanadium      | 7440-62-2  | 5                                 | mg/kg | 17              | 15               | 9.39    | No Limit            |
|                      |                       | EG005T: Zinc          | 7440-66-6  | 5                                 | mg/kg | 1930            | 1670             | 14.5    | 0% - 20%            |
|                      |                       | EG005T: Boron         | 7440-42-8  | 50                                | mg/kg | <50             | <50              | 0.00    | No Limit            |
| EG005T: Total Metal  | s by ICP-AES (QC Lot: | : 402103)             |            |                                   |       |                 |                  |         |                     |
| ES1606083-019        | B016.5_0.0-0.2        | EG005T: Bervllium     | 7440-41-7  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
|                      |                       | EG005T: Cadmium       | 7440-43-9  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
|                      |                       | EG005T: Barium        | 7440-39-3  | 10                                | mg/kg | <10             | <10              | 0.00    | No Limit            |
|                      |                       | EG005T: Chromium      | 7440-47-3  | 2                                 | mg/kg | 4               | 4                | 0.00    | No Limit            |
|                      |                       | EG005T: Cobalt        | 7440-48-4  | 2                                 | mg/kg | <2              | <2               | 0.00    | No Limit            |
|                      |                       | EG005T: Nickel        | 7440-02-0  | 2                                 | mg/kg | 3               | 3                | 0.00    | No Limit            |
|                      |                       | EG005T: Arsenic       | 7440-38-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                       | EG005T: Copper        | 7440-50-8  | 5                                 | mg/kg | 14              | 12               | 13.4    | No Limit            |
|                      |                       | EG005T: Lead          | 7439-92-1  | 5                                 | mg/kg | 16              | 14               | 11.3    | No Limit            |
|                      |                       | EG005T: Manganese     | 7439-96-5  | 5                                 | mg/kg | 15              | 16               | 0.00    | No Limit            |
|                      |                       | EG005T: Selenium      | 7782-49-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                       | EG005T: Vanadium      | 7440-62-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                       | EG005T: Zinc          | 7440-66-6  | 5                                 | mg/kg | 134             | 116              | 14.3    | 0% - 20%            |
|                      |                       | EG005T: Boron         | 7440-42-8  | 50                                | mg/kg | <50             | <50              | 0.00    | No Limit            |
| ES1606083-029        | A008.5_0.0-0.2        | EG005T: Beryllium     | 7440-41-7  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
|                      |                       | EG005T: Cadmium       | 7440-43-9  | 1                                 | mg/kg | <1              | <1               | 0.00    | No Limit            |
|                      |                       | EG005T: Barium        | 7440-39-3  | 10                                | mg/kg | 30              | 20               | 0.00    | No Limit            |
|                      |                       | EG005T: Chromium      | 7440-47-3  | 2                                 | mg/kg | 32              | 23               | 31.7    | 0% - 50%            |
|                      |                       | EG005T: Cobalt        | 7440-48-4  | 2                                 | mg/kg | 5               | 4                | 24.8    | No Limit            |
|                      |                       | EG005T: Nickel        | 7440-02-0  | 2                                 | mg/kg | 13              | 11               | 16.6    | No Limit            |
|                      |                       | EG005T: Arsenic       | 7440-38-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                       | EG005T: Copper        | 7440-50-8  | 5                                 | mg/kg | 47              | 44               | 6.49    | No Limit            |
|                      |                       | EG005T: Lead          | 7439-92-1  | 5                                 | mg/kg | 95              | 68               | 33.7    | 0% - 50%            |
|                      |                       | EG005T: Manganese     | 7439-96-5  | 5                                 | mg/kg | 96              | 71               | 30.4    | 0% - 50%            |
|                      |                       | EG005T: Selenium      | 7782-49-2  | 5                                 | mg/kg | <5              | <5               | 0.00    | No Limit            |
|                      |                       | EG005T: Vanadium      | 7440-62-2  | 5                                 | mg/kg | 13              | 10               | 22.0    | No Limit            |
| Page       | : 4 of 15                    |
|------------|------------------------------|
| Work Order | : ES1606083                  |
| Client     | : AECOM Australia Pty Ltd    |
| Project    | : 60488804/1.2 Caltex Kurnel |



| Sub-Matrix: SOIL     |                         |                                                  |            |     |       | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|--------------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                 | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG005T: Total Meta   | Is by ICP-AES (QC Lot   | : 402103) - continued                            |            |     |       |                 |                        |         |                     |
| ES1606083-029        | A008.5_0.0-0.2          | EG005T: Zinc                                     | 7440-66-6  | 5   | mg/kg | 911             | 1040                   | 13.6    | 0% - 20%            |
|                      |                         | EG005T: Boron                                    | 7440-42-8  | 50  | mg/kg | <50             | <50                    | 0.00    | No Limit            |
| EG035T: Total Rec    | overable Mercury by Fll | MS (QC Lot: 402101)                              |            |     |       |                 |                        |         |                     |
| ES1606016-003        | Anonymous               | EG035T: Mercury                                  | 7439-97-6  | 0.1 | mg/kg | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1606083-009        | B035_0.0-0.2            | EG035T: Mercury                                  | 7439-97-6  | 0.1 | mg/kg | 0.3             | 0.4                    | 0.00    | No Limit            |
| EG035T: Total Rec    | overable Mercury by Fll | MS (QC Lot: 402102)                              |            |     |       |                 |                        |         |                     |
| ES1606083-019        | B016.5_0.0-0.2          | EG035T: Mercury                                  | 7439-97-6  | 0.1 | mg/kg | 0.1             | 0.4                    | 108     | No Limit            |
| ES1606083-029        | A008.5_0.0-0.2          | EG035T: Mercury                                  | 7439-97-6  | 0.1 | mg/kg | 0.3             | 0.4                    | 0.00    | No Limit            |
| EP075(SIM)B: Polyr   | nuclear Aromatic Hydro  | carbons (QC Lot: 399047)                         |            |     |       |                 |                        |         |                     |
| ES1606083-001        | B001_0.0-0.2            | EP075(SIM): Benzo(a)pyrene                       | 50-32-8    | 0.5 | mg/kg | 1.4             | 1.2                    | 22.2    | No Limit            |
| ES1606083-011        | B034_0.0-0.2            | EP075(SIM): Benzo(a)pyrene                       | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP075(SIM)B: Polyr   | uclear Aromatic Hvdro   | carbons (QC Lot: 399051)                         |            |     |       |                 |                        |         |                     |
| ES1606083-021        | B016 0.0-0.2            | EP075(SIM): Benzo(a)pyrene                       | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| ES1606083-032        | <br>A013.5_0.4-0.5      | EP075(SIM): Benzo(a)pyrene                       | 50-32-8    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
| EP080/071: Total Pe  | etroleum Hvdrocarbons   | (QC Lot: 398899)                                 |            |     |       |                 |                        |         |                     |
| ES1606083-001        | B001 0.0-0.2            | EP080: C6 - C9 Eraction                          |            | 10  | mg/kg | <10             | <10                    | 0.00    | No Limit            |
| ES1606083-011        | <br>B034 0.0-0.2        | EP080: C6 - C9 Fraction                          |            | 10  | mg/kg | <10             | <10                    | 0.00    | No Limit            |
| EP080/071: Total Pe  | etroleum Hvdrocarbons   | (QC Lot: 398905)                                 |            |     |       |                 |                        |         |                     |
| ES1606083-021        | B016 0.0-0.2            | EP080: C6 - C9 Eraction                          |            | 10  | ma/ka | <10             | <10                    | 0.00    | No Limit            |
| ES1606083-032        | A013.5 0.4-0.5          | EP080: C6 - C9 Fraction                          |            | 10  | mg/kg | <10             | <10                    | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons    | (QC Lot: 399046)                                 |            |     |       |                 |                        |         |                     |
| ES1606083-001        | B001 0 0-0 2            | EP071: C15 - C28 Eraction                        |            | 100 | ma/ka | 15200           | 16700                  | 9 76    | 0% - 20%            |
|                      |                         | EP071: C29 - C36 Fraction                        |            | 100 | ma/ka | 9350            | 10100                  | 7.50    | 0% - 20%            |
|                      |                         | EP071: C10 - C14 Fraction                        |            | 50  | ma/ka | <50             | <50                    | 0.00    | No Limit            |
| ES1606083-011        | B034_0.0-0.2            | EP071: C15 - C28 Fraction                        |            | 100 | mg/kg | <100            | <100                   | 0.00    | No Limit            |
|                      | _                       | EP071: C29 - C36 Fraction                        |            | 100 | mg/kg | <100            | <100                   | 0.00    | No Limit            |
|                      |                         | EP071: C10 - C14 Fraction                        |            | 50  | mg/kg | <50             | <50                    | 0.00    | No Limit            |
| EP080/071: Total Pe  | troleum Hydrocarbons    | (QC Lot: 399050)                                 |            |     |       |                 |                        |         |                     |
| ES1606083-021        | B016_0.0-0.2            | EP071: C15 - C28 Fraction                        |            | 100 | mg/kg | 470             | 400                    | 18.2    | No Limit            |
|                      | _                       | EP071: C29 - C36 Fraction                        |            | 100 | mg/kg | 860             | 860                    | 0.00    | No Limit            |
|                      |                         | EP071: C10 - C14 Fraction                        |            | 50  | mg/kg | <50             | <50                    | 0.00    | No Limit            |
| ES1606083-032        | A013.5_0.4-0.5          | EP071: C15 - C28 Fraction                        |            | 100 | mg/kg | 230             | 250                    | 7.38    | No Limit            |
|                      |                         | EP071: C29 - C36 Fraction                        |            | 100 | mg/kg | <100            | <100                   | 0.00    | No Limit            |
|                      |                         | EP071: C10 - C14 Fraction                        |            | 50  | mg/kg | <50             | <50                    | 0.00    | No Limit            |
| EP080/071: Total Re  | ecoverable Hydrocarbo   | ns - NEPM 2013 Fractions (QC Lot: 398899)        |            |     |       |                 |                        |         |                     |
| ES1606083-001        | B001_0.0-0.2            | EP080: C6 - C10 Fraction                         | C6_C10     | 10  | mg/kg | <10             | <10                    | 0.00    | No Limit            |
| ES1606083-011        | B034_0.0-0.2            | EP080: C6 - C10 Fraction                         | C6_C10     | 10  | mg/kg | <10             | <10                    | 0.00    | No Limit            |
| EP080/071: Total Re  | ecoverable Hydrocarbo   | ns - NEPM 2013 Fractions (QC Lot: <u>398905)</u> |            |     |       |                 |                        |         |                     |

| Page       | 5 of 15                       |
|------------|-------------------------------|
| Work Order | ES1606083                     |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL     |                       |                                                       | [          |     |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-----------------------|-------------------------------------------------------|------------|-----|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                                      | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP080/071: Total Re  | ecoverable Hydrocarbo | ns - NEPM 2013 Fractions (QC Lot: 398905) - continued |            |     |       |                 |                        |         |                     |
| ES1606083-021        | B016_0.0-0.2          | EP080: C6 - C10 Fraction                              | C6_C10     | 10  | mg/kg | <10             | <10                    | 0.00    | No Limit            |
| ES1606083-032        | A013.5_0.4-0.5        | EP080: C6 - C10 Fraction                              | C6_C10     | 10  | mg/kg | <10             | <10                    | 0.00    | No Limit            |
| EP080/071: Total Re  | ecoverable Hydrocarbo | ns - NEPM 2013 Fractions (QC Lot: 399046)             |            |     |       |                 |                        |         |                     |
| ES1606083-001        | B001_0.0-0.2          | EP071: □C16 - C34 Fraction                            |            | 100 | mg/kg | 22500           | 24200                  | 7.05    | 0% - 20%            |
|                      | -                     | EP071: C34 - C40 Fraction                             |            | 100 | mg/kg | 6160            | 5940                   | 3.67    | 0% - 20%            |
|                      |                       | EP071: C10 - C16 Fraction                             |            | 50  | mg/kg | 290             | 240                    | 17.3    | No Limit            |
| ES1606083-011        | B034_0.0-0.2          | EP071: □C16 - C34 Fraction                            |            | 100 | mg/kg | <100            | <100                   | 0.00    | No Limit            |
|                      |                       | EP071: C34 - C40 Fraction                             |            | 100 | mg/kg | <100            | <100                   | 0.00    | No Limit            |
|                      |                       | EP071: C10 - C16 Fraction                             |            | 50  | mg/kg | <50             | <50                    | 0.00    | No Limit            |
| EP080/071: Total Re  | ecoverable Hydrocarbo | ns - NEPM 2013 Fractions (QC Lot: 399050)             |            |     |       |                 |                        |         |                     |
| ES1606083-021        | B016 0.0-0.2          | EP071: C16 - C34 Fraction                             |            | 100 | mg/kg | 1090            | 1110                   | 1.88    | 0% - 50%            |
|                      | -                     | EP071: C34 - C40 Fraction                             |            | 100 | mg/kg | 580             | 560                    | 4.67    | No Limit            |
|                      |                       | EP071: □C10 - C16 Fraction                            |            | 50  | mg/kg | <50             | <50                    | 0.00    | No Limit            |
| ES1606083-032        | A013.5 0.4-0.5        | EP071: C16 - C34 Fraction                             |            | 100 | mg/kg | 200             | 240                    | 18.3    | No Limit            |
|                      | -                     | EP071: C34 - C40 Fraction                             |            | 100 | mg/kg | <100            | <100                   | 0.00    | No Limit            |
|                      |                       | EP071: C10 - C16 Fraction                             |            | 50  | mg/kg | 70              | 50                     | 25.3    | No Limit            |
| EP080: BTEXN (QC     | Lot: 398899)          |                                                       |            |     |       |                 |                        |         |                     |
| ES1606083-001        | B001 0.0-0.2          | EP080: Benzene                                        | 71-43-2    | 0.2 | ma/ka | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      | -                     | EP080: Ethylbenzene                                   | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: meta- & para-Xylene                            | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       |                                                       | 106-42-3   |     | 0.0   |                 |                        |         |                     |
|                      |                       | EP080: ortho-Xylene                                   | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: Toluene                                        | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: Naphthalene                                    | 91-20-3    | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| ES1606083-011        | B034_0.0-0.2          | EP080: Benzene                                        | 71-43-2    | 0.2 | mg/kg | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                       | EP080: Ethylbenzene                                   | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: meta- & para-Xylene                            | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       |                                                       | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                       | EP080: ortho-Xylene                                   | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: Toluene                                        | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: Naphthalene                                    | 91-20-3    | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| EP080: BTEXN (QC     | Lot: 398905)          |                                                       |            |     |       |                 |                        |         |                     |
| ES1606083-021        | B016_0.0-0.2          | EP080: Benzene                                        | 71-43-2    | 0.2 | mg/kg | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                       | EP080: Ethylbenzene                                   | 100-41-4   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: meta- & para-Xylene                            | 108-38-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       |                                                       | 106-42-3   |     |       |                 |                        |         |                     |
|                      |                       | EP080: ortho-Xylene                                   | 95-47-6    | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: Toluene                                        | 108-88-3   | 0.5 | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                       | EP080: Naphthalene                                    | 91-20-3    | 1   | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| ES1606083-032        | A013.5 0.4-0.5        | EP080: Benzene                                        | 71-43-2    | 0.2 | mg/kg | <0.2            | <0.2                   | 0.00    | No Limit            |

| Page       | : 6 of 15                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL     |                          |                            |            |        |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------|----------------------------|------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound           | CAS Number | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP080: BTEXN (QC     | Lot: 398905) - continued |                            |            |        |       |                 |                        |         |                     |
| ES1606083-032        | A013.5_0.4-0.5           | EP080: Ethylbenzene        | 100-41-4   | 0.5    | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                          | EP080: meta- & para-Xylene | 108-38-3   | 0.5    | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                          |                            | 106-42-3   |        |       |                 |                        |         |                     |
|                      |                          | EP080: ortho-Xylene        | 95-47-6    | 0.5    | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                          | EP080: Toluene             | 108-88-3   | 0.5    | mg/kg | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                          | EP080: Naphthalene         | 91-20-3    | 1      | mg/kg | <1              | <1                     | 0.00    | No Limit            |
| Sub-Matrix: WATER    |                          |                            |            |        |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
| Laboratory sample ID | Client sample ID         | Method: Compound           | CAS Number | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG020F: Dissolved    | letals by ICP-MS (QC Lot | :: 401847)                 |            |        |       |                 |                        |         |                     |
| ES1605762-001        | Anonymous                | EG020A-F: Cadmium          | 7440-43-9  | 0.0001 | mg/L  | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      |                          | EG020A-F: Arsenic          | 7440-38-2  | 0.001  | mg/L  | 0.011           | 0.012                  | 0.00    | 0% - 50%            |
|                      |                          | EG020A-F: Barium           | 7440-39-3  | 0.001  | mg/L  | 0.023           | 0.023                  | 0.00    | 0% - 20%            |
|                      |                          | EG020A-F: Beryllium        | 7440-41-7  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Chromium         | 7440-47-3  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Cobalt           | 7440-48-4  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Copper           | 7440-50-8  | 0.001  | mg/L  | 0.027           | 0.026                  | 0.00    | 0% - 20%            |
|                      |                          | EG020A-F: Lead             | 7439-92-1  | 0.001  | mg/L  | 0.002           | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Manganese        | 7439-96-5  | 0.001  | mg/L  | 0.013           | 0.012                  | 8.83    | 0% - 50%            |
|                      |                          | EG020A-F: Nickel           | 7440-02-0  | 0.001  | mg/L  | 0.001           | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Zinc             | 7440-66-6  | 0.005  | mg/L  | 0.040           | 0.043                  | 5.03    | No Limit            |
|                      |                          | EG020A-F: Selenium         | 7782-49-2  | 0.01   | mg/L  | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Vanadium         | 7440-62-2  | 0.01   | mg/L  | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Boron            | 7440-42-8  | 0.05   | mg/L  | 0.06            | 0.06                   | 0.00    | No Limit            |
| ES1606003-002        | Anonymous                | EG020A-F: Cadmium          | 7440-43-9  | 0.0001 | mg/L  | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      |                          | EG020A-F: Arsenic          | 7440-38-2  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Barium           | 7440-39-3  | 0.001  | mg/L  | 0.019           | 0.019                  | 0.00    | 0% - 50%            |
|                      |                          | EG020A-F: Beryllium        | 7440-41-7  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Chromium         | 7440-47-3  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Cobalt           | 7440-48-4  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Copper           | 7440-50-8  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Lead             | 7439-92-1  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                          | EG020A-F: Manganese        | 7439-96-5  | 0.001  | mg/L  | 0.433           | 0.425                  | 1.93    | 0% - 20%            |
|                      |                          | EG020A-F: Nickel           | 7440-02-0  | 0.001  | mg/L  | 0.005           | 0.006                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Zinc             | 7440-66-6  | 0.005  | mg/L  | 7.86            | 7.95                   | 1.11    | 0% - 20%            |
|                      |                          | EG020A-F: Selenium         | 7782-49-2  | 0.01   | mg/L  | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Vanadium         | 7440-62-2  | 0.01   | mg/L  | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                          | EG020A-F: Boron            | 7440-42-8  | 0.05   | mg/L  | 0.20            | 0.19                   | 0.00    | No Limit            |
| EG020F: Dissolved    | Metals by ICP-MS (QC Lot | :: 401851)                 |            |        |       |                 |                        |         |                     |
| ES1606083-042        | QC161                    | EG020A-F: Cadmium          | 7440-43-9  | 0.0001 | mg/L  | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      |                          | EG020A-F: Arsenic          | 7440-38-2  | 0.001  | mg/L  | <0.001          | <0.001                 | 0.00    | No Limit            |

| Page       | : 7 of 15                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: WATER     |                             |                                    |            |        |      | Laboratory L    | Duplicate (DUP) Report |         |                     |
|-----------------------|-----------------------------|------------------------------------|------------|--------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID  | Client sample ID            | Method: Compound                   | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG020F: Dissolved M   | etals by ICP-MS (QC Lot: 40 | 01851) - continued                 |            |        |      |                 |                        |         |                     |
| ES1606083-042         | QC161                       | EG020A-F: Barium                   | 7440-39-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Beryllium                | 7440-41-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Chromium                 | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Cobalt                   | 7440-48-4  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Copper                   | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Lead                     | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Manganese                | 7439-96-5  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Nickel                   | 7440-02-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Zinc                     | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Selenium                 | 7782-49-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                       |                             | EG020A-F: Vanadium                 | 7440-62-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                       |                             | EG020A-F: Boron                    | 7440-42-8  | 0.05   | mg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
| EW1601094-001         | Anonymous                   | EG020A-F: Cadmium                  | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                       |                             | EG020A-F: Arsenic                  | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Barium                   | 7440-39-3  | 0.001  | mg/L | 0.001           | 0.001                  | 0.00    | No Limit            |
|                       |                             | EG020A-F: Beryllium                | 7440-41-7  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Chromium                 | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Cobalt                   | 7440-48-4  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Copper                   | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Lead                     | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
|                       |                             | EG020A-F: Manganese                | 7439-96-5  | 0.001  | mg/L | 0.012           | 0.013                  | 8.63    | 0% - 50%            |
|                       |                             | EG020A-F: Nickel                   | 7440-02-0  | 0.001  | mg/L | <0.001          | 0.001                  | 0.00    | No Limit            |
|                       |                             | EG020A-F: Zinc                     | 7440-66-6  | 0.005  | mg/L | 0.060           | 0.064                  | 5.61    | 0% - 50%            |
|                       |                             | EG020A-F: Selenium                 | 7782-49-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                       |                             | EG020A-F: Vanadium                 | 7440-62-2  | 0.01   | mg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                       |                             | EG020A-F: Boron                    | 7440-42-8  | 0.05   | mg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
| EG035F: Dissolved M   | ercury by FIMS (QC Lot: 40  | 1848)                              |            |        |      |                 |                        |         |                     |
| ES1605714-001         | Anonymous                   | EG035F: Mercury                    | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
| ES1606003-004         | Anonymous                   | EG035F: Mercury                    | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.00    | No Limit            |
| EP080/071: Total Petr | oleum Hydrocarbons (QC L    | .ot: 399248)                       |            |        |      |                 |                        |         |                     |
| ES1605867-001         | Anonymous                   | EP080: C6 - C9 Fraction            |            | 20     | µg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1606007-003         | Anonymous                   | EP080: C6 - C9 Fraction            |            | 20     | µg/L | <20             | <20                    | 0.00    | No Limit            |
| EP080/071: Total Rec  | overable Hydrocarbons - NE  | PM 2013 Fractions (QC Lot: 399248) |            |        |      |                 |                        |         |                     |
| ES1605867-001         | Anonymous                   | EP080: C6 - C10 Fraction           | C6_C10     | 20     | µg/L | <20             | <20                    | 0.00    | No Limit            |
| ES1606007-003         | Anonymous                   | EP080: C6 - C10 Fraction           | C6_C10     | 20     | µg/L | <20             | <20                    | 0.00    | No Limit            |
| EP080: BTEXN (QC L    | .ot: 399248)                |                                    |            |        |      |                 |                        |         |                     |
| ES1605867-001         | Anonymous                   | EP080: Benzene                     | 71-43-2    | 1      | µg/L | <1              | <1                     | 0.00    | No Limit            |
|                       | ,                           | EP080: Ethylbenzene                | 100-41-4   | 2      | μg/L | <2              | <2                     | 0.00    | No Limit            |

| Page       | : 8 of 15                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: WATER    |                         |                            |            |     |      | Laboratory L    | Duplicate (DUP) Report | t       |                     |
|----------------------|-------------------------|----------------------------|------------|-----|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound           | CAS Number | LOR | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP080: BTEXN (QC L   | ot: 399248) - continued |                            |            |     |      |                 |                        |         |                     |
| ES1605867-001        | Anonymous               | EP080: meta- & para-Xylene | 108-38-3   | 2   | µg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                         |                            | 106-42-3   |     |      |                 |                        |         |                     |
|                      |                         | EP080: ortho-Xylene        | 95-47-6    | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: Toluene             | 108-88-3   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: Naphthalene         | 91-20-3    | 5   | μg/L | <5              | <5                     | 0.00    | No Limit            |
| ES1606007-003        | Anonymous               | EP080: Benzene             | 71-43-2    | 1   | μg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                         | EP080: Ethylbenzene        | 100-41-4   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: meta- & para-Xylene | 108-38-3   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                         |                            | 106-42-3   |     |      |                 |                        |         |                     |
|                      |                         | EP080: ortho-Xylene        | 95-47-6    | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: Toluene             | 108-88-3   | 2   | μg/L | <2              | <2                     | 0.00    | No Limit            |
|                      |                         | EP080: Naphthalene         | 91-20-3    | 5   | µg/L | <5              | <5                     | 0.00    | No Limit            |



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                               |                   |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|------------------------------------------------|-------------------|--------|-------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                |                   | Report |       | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                               | CAS Number        | LOR    | Unit  | Result            | Concentration                         | LCS                | Low      | High       |  |
| EG005T: Total Metals by ICP-AES (QCLot: 402100 | ))                |        |       |                   |                                       |                    |          |            |  |
| EG005T: Arsenic                                | 7440-38-2         | 5      | mg/kg | <5                | 21.7 mg/kg                            | 94.2               | 86       | 126        |  |
| EG005T: Barium                                 | 7440-39-3         | 10     | mg/kg | <10               | 143 mg/kg                             | 103                | 85       | 115        |  |
| EG005T: Beryllium                              | 7440-41-7         | 1      | mg/kg | <1                | 5.63 mg/kg                            | 108                | 90       | 112628     |  |
| EG005T: Boron                                  | 7440-42-8         | 50     | mg/kg | <50               |                                       |                    |          |            |  |
| EG005T: Cadmium                                | 7440-43-9         | 1      | mg/kg | <1                | 4.64 mg/kg                            | 95.1               | 83       | 113        |  |
| EG005T: Chromium                               | 7440-47-3         | 2      | mg/kg | <2                | 43.9 mg/kg                            | 100                | 76       | 128        |  |
| EG005T: Cobalt                                 | 7440-48-4         | 2      | mg/kg | <2                | 16 mg/kg                              | 102                | 88       | 120        |  |
| EG005T: Copper                                 | 7440-50-8         | 5      | mg/kg | <5                | 32 mg/kg                              | 97.7               | 86       | 120        |  |
| EG005T: Lead                                   | 7439-92-1         | 5      | mg/kg | <5                | 40 mg/kg                              | 96.5               | 80       | 114        |  |
| EG005T: Manganese                              | 7439-96-5         | 5      | mg/kg | <5                | 130 mg/kg                             | 99.1               | 85       | 117        |  |
| EG005T: Nickel                                 | 7440-02-0         | 2      | mg/kg | <2                | 55 mg/kg                              | 99.7               | 87       | 123        |  |
| EG005T: Selenium                               | 7782-49-2         | 5      | mg/kg | <5                | 5.37 mg/kg                            | 101                | 75       | 131        |  |
| EG005T: Vanadium                               | 7440-62-2         | 5      | mg/kg | <5                | 29.6 mg/kg                            | 104                | 92       | 122        |  |
| EG005T: Zinc                                   | 7440-66-6         | 5      | mg/kg | <5                | 60.8 mg/kg                            | 97.1               | 80       | 122        |  |
| EG005T: Total Metals by ICP-AES (QCLot: 402103 | 3)                |        |       |                   |                                       |                    |          |            |  |
| EG005T: Arsenic                                | 7440-38-2         | 5      | mg/kg | <5                | 21.7 mg/kg                            | 103                | 86       | 126        |  |
| EG005T: Barium                                 | 7440-39-3         | 10     | mg/kg | <10               | 143 mg/kg                             | 103                | 85       | 115        |  |
| EG005T: Beryllium                              | 7440-41-7         | 1      | mg/kg | <1                | 5.63 mg/kg                            | 110                | 90       | 112628     |  |
| EG005T: Boron                                  | 7440-42-8         | 50     | mg/kg | <50               |                                       |                    |          |            |  |
| EG005T: Cadmium                                | 7440-43-9         | 1      | mg/kg | <1                | 4.64 mg/kg                            | 96.1               | 83       | 113        |  |
| EG005T: Chromium                               | 7440-47-3         | 2      | mg/kg | <2                | 43.9 mg/kg                            | 108                | 76       | 128        |  |
| EG005T: Cobalt                                 | 7440-48-4         | 2      | mg/kg | <2                | 16 mg/kg                              | 105                | 88       | 120        |  |
| EG005T: Copper                                 | 7440-50-8         | 5      | mg/kg | <5                | 32 mg/kg                              | 100.0              | 86       | 120        |  |
| EG005T: Lead                                   | 7439-92-1         | 5      | mg/kg | <5                | 40 mg/kg                              | 98.2               | 80       | 114        |  |
| EG005T: Manganese                              | 7439-96-5         | 5      | mg/kg | <5                | 130 mg/kg                             | 104                | 85       | 117        |  |
| EG005T: Nickel                                 | 7440-02-0         | 2      | mg/kg | <2                | 55 mg/kg                              | 100                | 87       | 123        |  |
| EG005T: Selenium                               | 7782-49-2         | 5      | mg/kg | <5                | 5.37 mg/kg                            | 95.8               | 75       | 131        |  |
| EG005T: Vanadium                               | 7440-62-2         | 5      | mg/kg | <5                | 29.6 mg/kg                            | 105                | 92       | 122        |  |
| EG005T: Zinc                                   | 7440-66-6         | 5      | mg/kg | <5                | 60.8 mg/kg                            | 112                | 80       | 122        |  |
| EG035T: Total Recoverable Mercury by FIMS (QC  | CLot: 402101)     |        |       |                   |                                       |                    |          |            |  |
| EG035T: Mercury                                | 7439-97-6         | 0.1    | mg/kg | <0.1              | 2.57 mg/kg                            | 78.5               | 70       | 105        |  |
| EG035T: Total Recoverable Mercury by FIMS (QC  | CLot: 402102)     |        |       |                   |                                       |                    |          |            |  |
| EG035T: Mercury                                | 7439-97-6         | 0.1    | mg/kg | <0.1              | 2.57 mg/kg                            | 78.4               | 70       | 105        |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbon  | s (QCLot: 399047) |        |       |                   |                                       |                    |          |            |  |

| Page       | : 10 of 15                    |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL                                |                       |              |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------------|-----------------------|--------------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                 |                       |              |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                | CAS Number            | LOR          | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons  | (QCLot: 399047) - cor | ntinued      |       |                   |               |                              |           |            |
| EP075(SIM): Benzo(a)pyrene                      | 50-32-8               | 0.5          | mg/kg | <0.5              | 6 mg/kg       | 106                          | 70        | 126        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons  | (QCLot: 399051)       |              |       |                   |               |                              |           |            |
| EP075(SIM): Benzo(a)pyrene                      | 50-32-8               | 0.5          | mg/kg | <0.5              | 6 mg/kg       | 96.4                         | 70        | 126        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot  | : 398899)             |              |       |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                         |                       | 10           | mg/kg | <10               | 26 mg/kg      | 111                          | 68        | 128        |
| EP080/071: Total Petroleum Hydrocarbons (QCI of | 398905)               |              |       |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                         |                       | 10           | mg/kg | <10               | 26 mg/kg      | 106                          | 68        | 128        |
| EP080/071: Total Petroleum Hydrocarbons (QCI of | . 399046)             |              |       |                   |               |                              |           |            |
| EP071: C10 - C14 Fraction                       |                       | 50           | mg/kg | <50               | 200 mg/kg     | 103                          | 75        | 129        |
| EP071: C15 - C28 Fraction                       |                       | 100          | mg/kg | <100              | 300 mg/kg     | 111                          | 77        | 131        |
| EP071: C29 - C36 Fraction                       |                       | 100          | mg/kg | <100              | 200 mg/kg     | 104                          | 71        | 129        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot  | : 399050)             |              |       |                   |               |                              |           |            |
| EP071: C10 - C14 Fraction                       |                       | 50           | mg/kg | <50               | 200 mg/kg     | 103                          | 75        | 129        |
| EP071: C15 - C28 Fraction                       |                       | 100          | mg/kg | <100              | 300 mg/kg     | 114                          | 77        | 131        |
| EP071: C29 - C36 Fraction                       |                       | 100          | mg/kg | <100              | 200 mg/kg     | 104                          | 71        | 129        |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCL | ot: 398899)  |       |                   |               |                              |           |            |
| EP080: C6 - C10 Fraction                        | C6_C10                | 10           | mg/kg | <10               | 31 mg/kg      | 112                          | 68        | 128        |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCL | ot: 398905)  |       |                   |               |                              |           |            |
| EP080: C6 - C10 Fraction                        | C6_C10                | 10           | mg/kg | <10               | 31 mg/kg      | 107                          | 68        | 128        |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCL | ot: 399046)  |       |                   |               |                              |           |            |
| EP071: C10 - C16 Fraction                       |                       | 50           | mg/kg | <50               | 250 mg/kg     | 101                          | 77        | 125        |
| EP071: C16 - C34 Fraction                       |                       | 100          | mg/kg | <100              | 350 mg/kg     | 110                          | 74        | 138        |
| EP071: □C34 - C40 Fraction                      |                       | 100          | mg/kg | <100              | 150 mg/kg     | 98.7                         | 63        | 131        |
| EP080/071: Total Recoverable Hydrocarbons - NEP | M 2013 Fractions (QCL | .ot: 399050) |       |                   |               |                              |           |            |
| EP071: C10 - C16 Fraction                       |                       | 50           | mg/kg | <50               | 250 mg/kg     | 106                          | 77        | 125        |
| EP071: C16 - C34 Fraction                       |                       | 100          | mg/kg | <100              | 350 mg/kg     | 111                          | 74        | 138        |
| EP071: C34 - C40 Fraction                       |                       | 100          | mg/kg | <100              | 150 mg/kg     | 96.8                         | 63        | 131        |
| EP080: BTEXN (QCLot: 398899)                    |                       |              |       |                   |               |                              |           |            |
| EP080: Benzene                                  | 71-43-2               | 0.2          | mg/kg | <0.2              | 1 mg/kg       | 106                          | 62        | 116        |
| EP080: Ethylbenzene                             | 100-41-4              | 0.5          | mg/kg | <0.5              | 1 mg/kg       | 105                          | 65        | 117        |
| EP080: meta- & para-Xylene                      | 108-38-3              | 0.5          | mg/kg | <0.5              | 2 mg/kg       | 106                          | 66        | 118        |
|                                                 | 106-42-3              |              |       |                   |               |                              |           |            |
| EP080: Naphthalene                              | 91-20-3               | 1            | mg/kg | <1                | 1 mg/kg       | 105                          | 63        | 119        |
| EP080: ortho-Xylene                             | 95-47-6               | 0.5          | mg/kg | <0.5              | 1 mg/kg       | 107                          | 68        | 120        |
| EP080: Toluene                                  | 108-88-3              | 0.5          | mg/kg | <0.5              | 1 mg/kg       | 104                          | 67        | 121        |
| EP080: BTEXN (QCLot: 398905)                    |                       |              |       |                   |               |                              |           |            |
| EP080: Benzene                                  | 71-43-2               | 0.2          | mg/kg | <0.2              | 1 mg/kg       | 101                          | 62        | 116        |

| Page       | : 11 of 15                    |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL                                   |            |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                                           |           |            |  |
|----------------------------------------------------|------------|--------|-------|-------------------|---------------------------------------|-------------------------------------------|-----------|------------|--|
|                                                    |            |        |       | Report            | Spike                                 | Spike Recovery (%)                        | Recovery  | Limits (%) |  |
| Method: Compound                                   | CAS Number | LOR    | Unit  | Result            | Concentration                         | LCS                                       | Low       | High       |  |
| EP080: BTEXN (QCLot: 398905) - continued           |            |        |       |                   |                                       |                                           |           |            |  |
| EP080: Ethylbenzene                                | 100-41-4   | 0.5    | mg/kg | <0.5              | 1 mg/kg                               | 109                                       | 65        | 117        |  |
| EP080: meta- & para-Xylene                         | 108-38-3   | 0.5    | mg/kg | <0.5              | 2 mg/kg                               | 110                                       | 66        | 118        |  |
|                                                    | 106-42-3   |        |       |                   |                                       |                                           |           |            |  |
| EP080: Naphthalene                                 | 91-20-3    | 1      | mg/kg | <1                | 1 mg/kg                               | 103                                       | 63        | 119        |  |
| EP080: ortho-Xylene                                | 95-47-6    | 0.5    | mg/kg | <0.5              | 1 mg/kg                               | 109                                       | 68        | 120        |  |
| EP080: Toluene                                     | 108-88-3   | 0.5    | mg/kg | <0.5              | 1 mg/kg                               | 99.8                                      | 67        | 121        |  |
| Sub-Matrix: WATER                                  |            |        |       | Method Blank (MB) |                                       | Laboratory Control Spike (LC              | S) Report |            |  |
|                                                    |            |        |       | Report            | Spike                                 | Spike Spike Recovery (%) Recovery I imits |           |            |  |
| Method: Compound                                   | CAS Number | LOR    | Unit  | Result            | Concentration                         | LCS                                       | Low       | High       |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 401847) |            |        |       |                   |                                       |                                           |           |            |  |
| EG020A-F: Arsenic                                  | 7440-38-2  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 100                                       | 85        | 114        |  |
| EG020A-F: Barium                                   | 7440-39-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 96.1                                      | 82        | 110        |  |
| EG020A-F: Beryllium                                | 7440-41-7  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 97.8                                      | 85        | 115        |  |
| EG020A-F: Boron                                    | 7440-42-8  | 0.05   | mg/L  | <0.05             | 0.5 mg/L                              | 91.1                                      | 85        | 115        |  |
| EG020A-F: Cadmium                                  | 7440-43-9  | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L                              | 94.9                                      | 84        | 110        |  |
| EG020A-F: Chromium                                 | 7440-47-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 94.2                                      | 85        | 111        |  |
| EG020A-F: Cobalt                                   | 7440-48-4  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 98.6                                      | 82        | 112        |  |
| EG020A-F: Copper                                   | 7440-50-8  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 98.4                                      | 81        | 111        |  |
| EG020A-F: Lead                                     | 7439-92-1  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 92.9                                      | 83        | 111        |  |
| EG020A-F: Manganese                                | 7439-96-5  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 96.7                                      | 82        | 110        |  |
| EG020A-F: Nickel                                   | 7440-02-0  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 93.0                                      | 82        | 112        |  |
| EG020A-F: Selenium                                 | 7782-49-2  | 0.01   | mg/L  | <0.01             | 0.1 mg/L                              | 97.8                                      | 85        | 115        |  |
| EG020A-F: Vanadium                                 | 7440-62-2  | 0.01   | mg/L  | <0.01             | 0.1 mg/L                              | 95.8                                      | 83        | 109        |  |
| EG020A-F: Zinc                                     | 7440-66-6  | 0.005  | mg/L  | <0.005            | 0.1 mg/L                              | 98.1                                      | 81        | 117        |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 401851) |            |        |       |                   |                                       |                                           |           |            |  |
| EG020A-F: Arsenic                                  | 7440-38-2  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 99.7                                      | 85        | 114        |  |
| EG020A-F: Barium                                   | 7440-39-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 96.3                                      | 82        | 110        |  |
| EG020A-F: Beryllium                                | 7440-41-7  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 97.5                                      | 85        | 115        |  |
| EG020A-F: Boron                                    | 7440-42-8  | 0.05   | mg/L  | <0.05             | 0.5 mg/L                              | 95.9                                      | 85        | 115        |  |
| EG020A-F: Cadmium                                  | 7440-43-9  | 0.0001 | mg/L  | <0.0001           | 0.1 mg/L                              | 94.3                                      | 84        | 110        |  |
| EG020A-F: Chromium                                 | 7440-47-3  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 91.5                                      | 85        | 111        |  |
| EG020A-F: Cobalt                                   | 7440-48-4  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 95.4                                      | 82        | 112        |  |
| EG020A-F: Copper                                   | 7440-50-8  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 92.9                                      | 81        | 111        |  |
| EG020A-F: Lead                                     | 7439-92-1  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 92.1                                      | 83        | 111        |  |
| EG020A-F: Manganese                                | 7439-96-5  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 91.5                                      | 82        | 110        |  |
| EG020A-F: Nickel                                   | 7440-02-0  | 0.001  | mg/L  | <0.001            | 0.1 mg/L                              | 92.7                                      | 82        | 112        |  |
| EG020A-F: Selenium                                 | 7782-49-2  | 0.01   | mg/L  | <0.01             | 0.1 mg/L                              | 95.2                                      | 85        | 115        |  |
| EG020A-F: Vanadium                                 | 7440-62-2  | 0.01   | mg/L  | <0.01             | 0.1 mg/L                              | 91.8                                      | 83        | 109        |  |

| Page       | : 12 of 15                    |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: WATER                         |                              |             |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------|------------------------------|-------------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                           |                              |             |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                          | CAS Number                   | LOR         | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EG020F: Dissolved Metals by ICP-MS (QCL   | ot: 401851) - continued      |             |      |                   |               |                              |           |            |
| EG020A-F: Zinc                            | 7440-66-6                    | 0.005       | mg/L | <0.005            | 0.1 mg/L      | 97.0                         | 81        | 117        |
| EG035F: Dissolved Mercury by FIMS (QCLo   | ot: 401848)                  |             |      |                   |               |                              |           |            |
| EG035F: Mercury                           | 7439-97-6                    | 0.0001      | mg/L | <0.0001           | 0.01 mg/L     | 92.0                         | 83        | 105        |
| EP075(SIM)B: Polynuclear Aromatic Hydroc  | arbons (QCLot: 398889)       |             |      |                   |               |                              |           |            |
| EP075(SIM): Benzo(a)pyrene                | 50-32-8                      | 0.5         | μg/L | <0.5              | 5 µg/L        | 81.5                         | 63        | 117        |
| EP080/071: Total Petroleum Hydrocarbons   | (QCLot: 398890)              |             |      |                   |               |                              |           |            |
| EP071: C10 - C14 Fraction                 |                              | 50          | μg/L | <50               | 2000 µg/L     | 101                          | 76        | 116        |
| EP071: C15 - C28 Fraction                 |                              | 100         | μg/L | <100              | 3000 µg/L     | 98.2                         | 83        | 109        |
| EP071: C29 - C36 Fraction                 |                              | 50          | μg/L | <50               | 2000 µg/L     | 101                          | 75        | 113        |
| EP080/071: Total Petroleum Hydrocarbons   | (QCLot: 399248)              |             |      |                   |               |                              |           |            |
| EP080: C6 - C9 Fraction                   |                              | 20          | μg/L | <20               | 260 µg/L      | 86.6                         | 75        | 127        |
| EP080/071: Total Recoverable Hydrocarbons | s - NEPM 2013 Fractions (QCL | ot: 398890) |      |                   |               |                              |           |            |
| EP071: C10 - C16 Fraction                 |                              | 100         | μg/L | <100              | 2500 µg/L     | 100                          | 76        | 114        |
| EP071: C16 - C34 Fraction                 |                              | 100         | μg/L | <100              | 3500 µg/L     | 103                          | 81        | 111        |
| EP071: C34 - C40 Fraction                 |                              | 100         | µg/L | <100              | 1500 µg/L     | 106                          | 77        | 119        |
| EP080/071: Total Recoverable Hydrocarbons | s - NEPM 2013 Fractions (QCL | ot: 399248) |      |                   |               |                              |           |            |
| EP080: C6 - C10 Fraction                  | C6_C10                       | 20          | μg/L | <20               | 310 µg/L      | 90.6                         | 75        | 127        |
| EP080: BTEXN (QCLot: 399248)              |                              |             |      |                   |               |                              |           |            |
| EP080: Benzene                            | 71-43-2                      | 1           | μg/L | <1                | 10 µg/L       | 94.7                         | 70        | 122        |
| EP080: Ethylbenzene                       | 100-41-4                     | 2           | μg/L | <2                | 10 µg/L       | 95.9                         | 70        | 120        |
| EP080: meta- & para-Xylene                | 108-38-3                     | 2           | μg/L | <2                | 10 µg/L       | 95.0                         | 69        | 121        |
|                                           | 106-42-3                     |             |      |                   |               |                              |           |            |
| EP080: Naphthalene                        | 91-20-3                      | 5           | μg/L | <5                | 10 µg/L       | 88.5                         | 70        | 120        |
| EP080: ortho-Xylene                       | 95-47-6                      | 2           | μg/L | <2                | 10 µg/L       | 98.4                         | 72        | 122        |
| EP080: Toluene                            | 108-88-3                     | 2           | μg/L | <2                | 10 µg/L       | 91.3                         | 69        | 123        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL     |                                |                  |            | Matrix Spike (MS) Report |                  |             |          |  |
|----------------------|--------------------------------|------------------|------------|--------------------------|------------------|-------------|----------|--|
|                      |                                |                  |            | Spike                    | SpikeRecovery(%) | Recovery Li | mits (%) |  |
| Laboratory sample ID | Client sample ID               | Method: Compound | CAS Number | Concentration            | MS               | Low         | High     |  |
| EG005T: Total Meta   | lls by ICP-AES (QCLot: 402100) |                  |            |                          |                  |             |          |  |
| ES1606016-003        | Anonymous                      | EG005T: Arsenic  | 7440-38-2  | 50 mg/kg                 | 96.3             | 70          | 130      |  |
|                      |                                | EG005T: Cadmium  | 7440-43-9  | 50 mg/kg                 | 95.8             | 70          | 130      |  |
|                      |                                | EG005T: Chromium | 7440-47-3  | 50 mg/kg                 | 96.0             | 70          | 130      |  |



| Sub-Matrix: SOIL     |                                                   | М                         | Matrix Spike (MS) Report |               |                  |          |            |
|----------------------|---------------------------------------------------|---------------------------|--------------------------|---------------|------------------|----------|------------|
|                      |                                                   |                           |                          | Spike         | SpikeRecovery(%) | Recovery | Limits (%) |
| Laboratory sample ID | Client sample ID                                  | Method: Compound          | CAS Number               | Concentration | MS               | Low      | High       |
| EG005T: Total Met    | als by ICP-AES (QCLot: 402100) - contin           | nued                      |                          |               |                  |          |            |
| ES1606016-003        | Anonymous                                         | EG005T: Copper            | 7440-50-8                | 250 mg/kg     | 96.2             | 70       | 130        |
|                      |                                                   | EG005T: Lead              | 7439-92-1                | 250 mg/kg     | 96.0             | 70       | 130        |
|                      |                                                   | EG005T: Nickel            | 7440-02-0                | 50 mg/kg      | 96.7             | 70       | 130        |
|                      |                                                   | EG005T: Zinc              | 7440-66-6                | 250 mg/kg     | 95.0             | 70       | 130        |
| EG005T: Total Met    | als by ICP-AES (QCLot: 402103)                    |                           |                          |               |                  |          |            |
| ES1606083-019        | B016.5_0.0-0.2                                    | EG005T: Arsenic           | 7440-38-2                | 50 mg/kg      | 97.3             | 70       | 130        |
|                      |                                                   | EG005T: Cadmium           | 7440-43-9                | 50 mg/kg      | 98.3             | 70       | 130        |
|                      |                                                   | EG005T: Chromium          | 7440-47-3                | 50 mg/kg      | 98.0             | 70       | 130        |
|                      |                                                   | EG005T: Copper            | 7440-50-8                | 250 mg/kg     | 97.0             | 70       | 130        |
|                      |                                                   | EG005T: Lead              | 7439-92-1                | 250 mg/kg     | 97.9             | 70       | 130        |
|                      | EG005T: Nickel                                    | 7440-02-0                 | 50 mg/kg                 | 98.8          | 70               | 130      |            |
|                      |                                                   | EG005T: Zinc              | 7440-66-6                | 250 mg/kg     | 88.2             | 70       | 130        |
| EG035T: Total Re     | coverable Mercury by FIMS(QCLot: 402 <sup>,</sup> | 101)                      |                          |               |                  |          |            |
| ES1606016-003        | Anonymous                                         | EG035T: Mercury           | 7439-97-6                | 5 mg/kg       | 91.1             | 70       | 130        |
| EG035T: Total Re     | coverable Mercury by FIMS (QCLot: 402             | 102)                      |                          |               |                  |          |            |
| ES1606083-019        | B016.5_0.0-0.2                                    | EG035T: Mercury           | 7439-97-6                | 5 mg/kg       | 88.7             | 70       | 130        |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 398899             | )                         |                          |               |                  |          |            |
| ES1606083-001        | B001_0.0-0.2                                      | EP080: C6 - C9 Fraction   |                          | 32.5 mg/kg    | 120              | 70       | 130        |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 398905             | i)                        |                          |               |                  |          |            |
| ES1606083-021        | B016_0.0-0.2                                      | EP080: C6 - C9 Fraction   |                          | 32.5 mg/kg    | 117              | 70       | 130        |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 399046             | ;)                        |                          |               |                  |          |            |
| ES1606083-001        | B001_0.0-0.2                                      | EP071: C10 - C14 Fraction |                          | 523 mg/kg     | 109              | 73       | 137        |
|                      |                                                   | EP071: C15 - C28 Fraction |                          | 2319 mg/kg    | □Not             | 53       | 131        |
|                      |                                                   |                           |                          |               | Determined       |          |            |
|                      |                                                   | EP071: C29 - C36 Fraction |                          | 1714 mg/kg    | □ Not            | 52       | 132        |
|                      |                                                   |                           |                          |               | Determined       |          |            |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 399050             | )                         |                          |               |                  |          |            |
| ES1606083-021        | B016_0.0-0.2                                      | EP071: C10 - C14 Fraction |                          | 523 mg/kg     | 93.3             | 73       | 137        |
|                      |                                                   | EP071: C15 - C28 Fraction |                          | 2319 mg/kg    | 103              | 53       | 131        |
|                      |                                                   | EP071: C29 - C36 Fraction |                          | 1714 mg/kg    | 122              | 52       | 132        |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013              | Fractions (QCLot: 398899) |                          |               |                  |          |            |
| ES1606083-001        | B001_0.0-0.2                                      | EP080: C6 - C10 Fraction  | C6_C10                   | 37.5 mg/kg    | 110              | 70       | 130        |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013              | Fractions (QCLot: 398905) |                          |               |                  |          |            |
| ES1606083-021        | B016_0.0-0.2                                      | EP080: C6 - C10 Fraction  | C6 C10                   | 37.5 mg/kg    | 112              | 70       | 130        |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013              | Fractions (QCLot: 399046) |                          |               |                  |          |            |
| ES1606083-001        | B001 0.0-0.2                                      | EP071: C10 - C16 Fraction |                          | 860 mg/kg     | 101              | 73       | 137        |



| Sub-Matrix: SOIL     |                                                    |                            | Matrix Spike (MS) Report |               |                         |             |           |
|----------------------|----------------------------------------------------|----------------------------|--------------------------|---------------|-------------------------|-------------|-----------|
|                      |                                                    |                            |                          | Spike         | SpikeRecovery(%)        | Recovery Li | imits (%) |
| Laboratory sample ID | Client sample ID                                   | Method: Compound           | CAS Number               | Concentration | MS                      | Low         | High      |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions (QCI | _ot: 399046) - continued   |                          |               |                         |             |           |
| ES1606083-001        | B001_0.0-0.2                                       | EP071: C16 - C34 Fraction  |                          | 3223 mg/kg    | □Not                    | 53          | 131       |
|                      |                                                    |                            |                          |               | Determined              |             |           |
|                      |                                                    | EP071: C34 - C40 Fraction  |                          | 1058 mg/kg    | □ Not                   | 52          | 132       |
|                      |                                                    |                            |                          |               | Determined              |             |           |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions(QCI  | _ot: 399050)               |                          |               |                         |             |           |
| ES1606083-021        | B016_0.0-0.2                                       | EP071: C10 - C16 Fraction  |                          | 860 mg/kg     | 99.2                    | 73          | 137       |
|                      |                                                    | EP071: □C16 - C34 Fraction |                          | 3223 mg/kg    | 114                     | 53          | 131       |
|                      |                                                    | EP071: C34 - C40 Fraction  |                          | 1058 mg/kg    | 119                     | 52          | 132       |
| EP080: BTEXN (Q      | CLot: 398899)                                      |                            |                          |               |                         |             |           |
| ES1606083-001        | B001 0.0-0.2                                       | EP080: Benzene             | 71-43-2                  | 2.5 mg/kg     | 116                     | 70          | 130       |
|                      |                                                    | EP080: Ethylbenzene        | 100-41-4                 | 2.5 mg/kg     | 122                     | 70          | 130       |
|                      |                                                    | EP080: meta- & para-Xylene | 108-38-3                 | 2.5 mg/kg     | 118                     | 70          | 130       |
|                      |                                                    |                            | 106-42-3                 |               |                         |             |           |
|                      |                                                    | EP080: Naphthalene         | 91-20-3                  | 2.5 mg/kg     | 110                     | 70          | 130       |
|                      |                                                    | EP080: ortho-Xylene        | 95-47-6                  | 2.5 mg/kg     | 118                     | 70          | 130       |
|                      |                                                    | EP080: Toluene             | 108-88-3                 | 2.5 mg/kg     | 115                     | 70          | 130       |
| EP080: BTEXN (Q      | CLot: 398905)                                      |                            |                          |               |                         |             |           |
| ES1606083-021        | B016_0.0-0.2                                       | EP080: Benzene             | 71-43-2                  | 2.5 mg/kg     | 106                     | 70          | 130       |
|                      |                                                    | EP080: Ethylbenzene        | 100-41-4                 | 2.5 mg/kg     | 112                     | 70          | 130       |
|                      |                                                    | EP080: meta- & para-Xylene | 108-38-3                 | 2.5 mg/kg     | 112                     | 70          | 130       |
|                      |                                                    |                            | 106-42-3                 |               |                         |             |           |
|                      |                                                    | EP080: Naphthalene         | 91-20-3                  | 2.5 mg/kg     | 102                     | 70          | 130       |
|                      |                                                    | EP080: ortho-Xylene        | 95-47-6                  | 2.5 mg/kg     | 112                     | 70          | 130       |
|                      |                                                    | EP080: Toluene             | 108-88-3                 | 2.5 mg/kg     | 107                     | 70          | 130       |
| Sub-Matrix: WATER    |                                                    |                            |                          | Ма            | atrix Spike (MS) Report | •           |           |
|                      |                                                    |                            |                          | Spike         | SpikeRecovery(%)        | Recovery Li | imits (%) |
| Laboratory sample ID | Client sample ID                                   | Method: Compound           | CAS Number               | Concentration | MS                      | Low         | High      |
| EG020F: Dissolved    | I Metals by ICP-MS (QCLot: 401847)                 |                            |                          |               |                         |             |           |
| ES1605714-001        | Anonymous                                          | EG020A-F: Arsenic          | 7440-38-2                | 1 mg/L        | 104                     | 70          | 130       |
|                      |                                                    | EG020A-F: Barium           | 7440-39-3                | 1 mg/L        | 101                     | 70          | 130       |
|                      |                                                    | EG020A-F: Beryllium        | 7440-41-7                | 1 mg/L        | 98.7                    | 70          | 130       |
|                      |                                                    | EG020A-F: Cadmium          | 7440-43-9                | 0.25 mg/L     | 98.9                    | 70          | 130       |
|                      |                                                    | EG020A-F: Chromium         | 7440-47-3                | 1 mg/L        | 94.6                    | 70          | 130       |
|                      |                                                    | EG020A-F: Cobalt           | 7440-48-4                | 1 mg/L        | 102                     | 70          | 130       |
|                      |                                                    | EG020A-F: Copper           | 7440-50-8                | 1 mg/L        | 101                     | 70          | 130       |
|                      |                                                    | EG020A-F: Lead             | 7439-92-1                | 1 mg/L        | 95.0                    | 70          | 130       |
|                      |                                                    | EG020A-F: Manganese        | 7439-96-5                | 1 mg/L        | 95.3                    | 70          | 130       |
|                      |                                                    | EG020A-F: Nickel           | 7440-02-0                | 1 mg/L        | 98.9                    | 70          | 130       |

| Page       | : 15 of 15                    |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: WATER    |                                                 |                            | M          | atrix Spike (MS) Report |                  |            |           |
|----------------------|-------------------------------------------------|----------------------------|------------|-------------------------|------------------|------------|-----------|
|                      |                                                 |                            |            | Spike                   | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                | Method: Compound           | CAS Number | Concentration           | MS               | Low        | High      |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 401847) - continued  |                            |            |                         |                  |            |           |
| ES1605714-001        | Anonymous                                       | EG020A-F: Vanadium         | 7440-62-2  | 1 mg/L                  | 96.3             | 70         | 130       |
|                      |                                                 | EG020A-F: Zinc             | 7440-66-6  | 1 mg/L                  | 102              | 70         | 130       |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 401851)              |                            |            |                         |                  |            |           |
| ES1606098-001        | Anonymous                                       | EG020A-F: Arsenic          | 7440-38-2  | 1 mg/L                  | 99.3             | 70         | 130       |
|                      |                                                 | EG020A-F: Barium           | 7440-39-3  | 1 mg/L                  | 95.9             | 70         | 130       |
|                      |                                                 | EG020A-F: Beryllium        | 7440-41-7  | 1 mg/L                  | 98.9             | 70         | 130       |
|                      | EG020A-F: Cadmium                               | 7440-43-9                  | 0.25 mg/L  | 95.2                    | 70               | 130        |           |
|                      |                                                 | EG020A-F: Chromium         | 7440-47-3  | 1 mg/L                  | 94.0             | 70         | 130       |
|                      |                                                 | EG020A-F: Cobalt           | 7440-48-4  | 1 mg/L                  | 97.6             | 70         | 130       |
|                      |                                                 | EG020A-F: Copper           | 7440-50-8  | 1 mg/L                  | 97.1             | 70         | 130       |
|                      |                                                 | EG020A-F: Lead             | 7439-92-1  | 1 mg/L                  | 91.5             | 70         | 130       |
|                      |                                                 | EG020A-F: Manganese        | 7439-96-5  | 1 mg/L                  | 95.4             | 70         | 130       |
|                      |                                                 | EG020A-F: Nickel           | 7440-02-0  | 1 mg/L                  | 94.9             | 70         | 130       |
|                      |                                                 | EG020A-F: Vanadium         | 7440-62-2  | 1 mg/L                  | 95.9             | 70         | 130       |
|                      |                                                 | EG020A-F: Zinc             | 7440-66-6  | 1 mg/L                  | 96.8             | 70         | 130       |
| EG035F: Dissolve     | d Mercury by FIMS (QCLot: 401848)               |                            |            |                         |                  |            |           |
| EP1602288-001        | Anonymous                                       | EG035F: Mercury            | 7439-97-6  | 0.01 mg/L               | □ 56.1           | 70         | 130       |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 399248)          |                            |            |                         |                  |            |           |
| ES1605867-001        | Anonymous                                       | EP080: C6 - C9 Fraction    |            | 325 µg/L                | 88.1             | 70         | 130       |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013 Fractions( | QCLot: 399248)             |            |                         |                  |            |           |
| ES1605867-001        | Anonymous                                       | EP080: C6 - C10 Fraction   | C6_C10     | 375 µg/L                | 85.8             | 70         | 130       |
| EP080: BTEXN (Q      | CLot: 399248)                                   |                            |            |                         |                  |            |           |
| ES1605867-001        | Anonymous                                       | EP080: Benzene             | 71-43-2    | 25 µg/L                 | 70.0             | 70         | 130       |
|                      |                                                 | EP080: Ethylbenzene        | 100-41-4   | 25 µg/L                 | 81.4             | 70         | 130       |
|                      |                                                 | EP080: meta- & para-Xylene | 108-38-3   | 25 µg/L                 | 81.1             | 70         | 130       |
|                      |                                                 |                            | 106-42-3   |                         |                  |            |           |
|                      |                                                 | EP080: Naphthalene         | 91-20-3    | 25 µg/L                 | 95.2             | 70         | 130       |
|                      |                                                 | EP080: ortho-Xylene        | 95-47-6    | 25 µg/L                 | 81.9             | 70         | 130       |
|                      |                                                 | EP080: Toluene             | 108-88-3   | 25 µg/L                 | 73.5             | 70         | 130       |



| QA/QC Compliance Assessment to assist with Quality Review |                               |                         |                                 |  |  |  |  |
|-----------------------------------------------------------|-------------------------------|-------------------------|---------------------------------|--|--|--|--|
| Work Order                                                | ES1606083                     | Page                    | : 1 of 14                       |  |  |  |  |
| Client                                                    | : AECOM Australia Pty Ltd     | Laboratory              | : Environmental Division Sydney |  |  |  |  |
| Contact                                                   | MR STEPHEN RANDALL            | Telephone               | : +61 2 8784 8503               |  |  |  |  |
| Project                                                   | : 60488804/1.2 Caltex Kurnell | Date Samples Received   | : 17-Mar-2016                   |  |  |  |  |
| Site                                                      | :                             | Issue Date              | : 30-Mar-2016                   |  |  |  |  |
| Sampler                                                   | : KATE PIGRAM                 | No. of samples received | : 42                            |  |  |  |  |
| Order number                                              | : 60488804/1.2                | No. of samples analysed | : 42                            |  |  |  |  |
|                                                           |                               |                         |                                 |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal e pert and e ternal Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## Summary of Outliers

## **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- I NO Method Blank value outliers occur.
- □ <u>NO</u> Duplicate outliers occur.
- □ <u>NO</u> Laboratory Control outliers occur.
- □ Matri ⊃ Spike outliers e ist please see following pages for full details.
- □ Surrogate recovery outliers e list for all regular sample matrices please see following pages for full details.

### **Outliers : Analysis Holding Time Compliance**

□ <u>NO</u> Analysis Holding Time Outliers e ist.

## **Outliers : Frequency of Quality Control Samples**

□ Quality Control Sample Fre⊡uency Outliers e List - please see following pages for full details.



## **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: SOIL

| Compound Group Name                                | Laboratory Sample ID | Client Sample ID | Analyte             | CAS Number | Data       | Limits | Comment                          |
|----------------------------------------------------|----------------------|------------------|---------------------|------------|------------|--------|----------------------------------|
| Matri□ Spike (MS) Recoveries                       |                      |                  |                     |            | _          |        |                                  |
| EP080/071: Total Petroleum Hydrocarbons            | ES1606083001         | B001_0.0-0.2     | C15 - C28 Fraction  |            | Not        |        | MS recovery not determined,      |
|                                                    |                      |                  |                     |            | Determined |        | background level greater than or |
|                                                    |                      |                  |                     |            |            |        | e⊡ual to 4⊡ spike level.         |
| EP080/071: Total Petroleum Hydrocarbons            | ES1606083001         | B001_0.0-0.2     | C29 - C36 Fraction  |            | Not        |        | MS recovery not determined,      |
|                                                    |                      |                  |                     |            | Determined |        | background level greater than or |
|                                                    |                      |                  |                     |            |            |        | e⊡ual to 4⊡ spike level.         |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2 | 2 ES1606083001       | B001_0.0-0.2     | >C16 - C34 Fraction |            | Not        |        | MS recovery not determined,      |
|                                                    |                      |                  |                     |            | Determined |        | background level greater than or |
|                                                    |                      |                  |                     |            |            |        | e⊡ual to 4⊡ spike level.         |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2 | 2 ES1606083001       | B001_0.0-0.2     | >C34 - C40 Fraction |            | Not        |        | MS recovery not determined,      |
|                                                    |                      |                  |                     |            | Determined |        | background level greater than or |
|                                                    |                      |                  |                     |            |            |        | e ⊐ual to 4⊐ spike level.        |

#### Matrix: WATER

| Compound Group Name               | Laboratory Sample ID | Client Sample ID | Analyte | CAS Number | Data   | Limits  | Comment                               |
|-----------------------------------|----------------------|------------------|---------|------------|--------|---------|---------------------------------------|
| Matri⊟ Spike (MS) Recoveries      |                      |                  |         |            |        |         |                                       |
| EG035F: Dissolved Mercury by FIMS | EP1602288001         | Anonymous        | Mercury | 7439-97-6  | 56.1 % | 70-130% | Recovery less than lower data ⊡uality |
|                                   |                      |                  |         |            |        |         | oblective                             |

## Regular Sample Surrogates

#### Sub-Matrix: SOIL

| Compound Group Name                       | Laboratory Sample ID | Client Sample ID | Analyte              | CAS Number | Data   | Limits   | Comment                               |
|-------------------------------------------|----------------------|------------------|----------------------|------------|--------|----------|---------------------------------------|
| Samples Submitted                         |                      |                  |                      |            |        |          |                                       |
| EP075(SIM)S: Phenolic Compound Surrogates | ES1606083-019        | B016.5_0.0-0.2   | 2.4.6-Tribromophenol | 118-79-6   | 142 %  | 40-138 % | Recovery greater than upper data      |
|                                           |                      |                  |                      |            |        |          | □uality ob ective                     |
| EP075(SIM)T: PAH Surrogates               | ES1606083-031        | A013.5_0.0-0.2   | 2-Fluorobiphenyl     | 321-60-8   | 69.5 % | 70-122 % | Recovery less than lower data ⊡uality |
|                                           |                      |                  |                      |            |        |          | oblective                             |
| EP075(SIM)T: PAH Surrogates               | ES1606083-036        | QC150            | 2-Fluorobiphenyl     | 321-60-8   | 66.4 % | 70-122 % | Recovery less than lower data ⊡uality |
|                                           |                      |                  |                      |            |        |          | oblective                             |
| EP075(SIM)T: PAH Surrogates               | ES1606083-041        | QC157            | 2-Fluorobiphenyl     | 321-60-8   | 62.6 % | 70-122 % | Recovery less than lower data ⊡uality |
|                                           |                      |                  |                      |            |        |          | oblective                             |
| EP075(SIM)T: PAH Surrogates               | ES1606083-039        | QC154            | 4-Terphenyl-d14      | 1718-51-0  | 133 %  | 65-129 % | Recovery greater than upper data      |
|                                           |                      |                  |                      |            |        |          | □uality oblective                     |

## **Outliers : Frequency of Quality Control Samples**

| Matrix: WATER               |       |         |          |          |                                |
|-----------------------------|-------|---------|----------|----------|--------------------------------|
| Quality Control Sample Type | Count |         | Rate (%) |          | Quality Control Specification  |
| Method                      | QC    | Regular | Actual   | Expected |                                |
| Laboratory Duplicates (DUP) |       |         |          |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0     | 7       | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction | 0     | 11      | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard |



#### Matrix: WATER

| Quality Control Sample Type | Co | unt     | Rate (%) |          | Quality Control Specification  |
|-----------------------------|----|---------|----------|----------|--------------------------------|
| Method                      | QC | Regular | Actual   | Expected |                                |
| Matrix Spikes (MS)          |    |         |          |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 7       | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction | 0  | 11      | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |

## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                             |                      |             |                |                          | Evaluation | n: 🛛 = Holding time | breach 🛛 = Withi | in holding time. |  |
|------------------------------------------|----------------------|-------------|----------------|--------------------------|------------|---------------------|------------------|------------------|--|
| Method                                   |                      | Sample Date | Ex             | Extraction / Preparation |            |                     | Analysis         |                  |  |
| Container / Client Sample ID(s)          |                      |             | Date extracted | Due for extraction       | Evaluation | Date analysed       | Due for analysis | Evaluation       |  |
| EA055: Moisture Content                  |                      |             |                |                          |            |                     |                  |                  |  |
| Soil Glass □ar - □npreserved (EA055-103) |                      |             |                |                          |            |                     |                  |                  |  |
| B001_0.0-0.2,                            | B003.5_0.0-0.2,      | 14-Mar-2016 |                |                          |            | 20-Mar-2016         | 28-Mar-2016      | П                |  |
| B007.5_0.0-0.2,                          | B009.5_0.0-0.2,      |             |                |                          |            |                     |                  |                  |  |
| B010.5_0.0-0.2,                          | B012.5_0.0-0.2,      |             |                |                          |            |                     |                  |                  |  |
| QC150                                    |                      |             |                |                          |            |                     |                  |                  |  |
| Soil Glass □ar - □npreserved (EA055-103) |                      |             |                |                          |            |                     |                  |                  |  |
| B036_0.0-0.2,                            | B036_0.5-0.6,        | 15-Mar-2016 |                |                          |            | 20-Mar-2016         | 29-Mar-2016      | П                |  |
| B035_0.0-0.2,                            | B035_0.5-0.6,        |             |                |                          |            |                     |                  |                  |  |
| B034_0.0-0.2,                            | B034_0.5-0.6,        |             |                |                          |            |                     |                  |                  |  |
| B033_0.0-0.2,                            | B033_0.5-0.6,        |             |                |                          |            |                     |                  |                  |  |
| B032_0.0-0.2,                            | B032_0.5-0.6,        |             |                |                          |            |                     |                  |                  |  |
| B031_0.0-0.2,                            | B031_0.5-0.6,        |             |                |                          |            |                     |                  |                  |  |
| B016.5_0.0-0.2,                          | B016.5_0.5-0.6,      |             |                |                          |            |                     |                  |                  |  |
| B016_0.0-0.2,                            | B015.5_0.5-0.6,      |             |                |                          |            |                     |                  |                  |  |
| B014_0.0-0.2,                            | QC152, B014_0.5-0.6, |             |                |                          |            |                     |                  |                  |  |
| QC154                                    |                      |             |                |                          |            |                     |                  |                  |  |
| Soil Glass □ar - □npreserved (EA055-103) |                      |             |                |                          |            |                     |                  |                  |  |
| A003.5_0.0-0.2,                          | A005.5_0.0-0.2,      | 16-Mar-2016 |                |                          |            | 20-Mar-2016         | 30-Mar-2016      | П                |  |
| A006.5_0.0-0.2,                          | A007.5_0.0-0.2,      |             |                |                          |            |                     |                  |                  |  |
| A008.5_0.0-0.2,                          | A013.5_0.0-0.2,      |             |                |                          |            |                     |                  |                  |  |
| A013.5_0.4-0.5,                          | A014.5_0.4-0.5,      |             |                |                          |            |                     |                  |                  |  |
| C011_0.0-0.2,                            | C012_0.0-0.2,        |             |                |                          |            |                     |                  |                  |  |
| QC157                                    |                      |             |                |                          |            |                     |                  |                  |  |

| Page       | : 4 of 14                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: SOIL                         |                      |             |                          |                    | Evaluation | : <b>I</b> = Holding time | breach □0 = Withi | n holding time |
|--------------------------------------|----------------------|-------------|--------------------------|--------------------|------------|---------------------------|-------------------|----------------|
| Method                               |                      | Sample Date | Extraction / Preparation |                    |            | Analysis                  |                   |                |
| Container / Client Sample ID(s)      |                      |             | Date extracted           | Due for extraction | Evaluation | Date analysed             | Due for analysis  | Evaluation     |
| EA200: AS 4964 - 2004 Identification | of Asbestos in Soils |             |                          |                    |            |                           |                   |                |
| Snap Lock Bag: Separate bag receive  | d (EA200)            |             |                          |                    |            |                           |                   |                |
| B001_0.0-0.2,                        | B003.5_0.0-0.2,      | 14-Mar-2016 |                          |                    |            | 22-Mar-2016               | 10-Sep-2016       | П              |
| B007.5_0.0-0.2,                      | B009.5_0.0-0.2,      |             |                          |                    |            |                           |                   |                |
| B010.5_0.0-0.2,                      | B012.5_0.0-0.2       |             |                          |                    |            |                           |                   |                |
| Snap Lock Bag: Separate bag receive  | d (EA200)            |             |                          |                    |            |                           |                   |                |
| B036_0.0-0.2,                        | B036_0.5-0.6,        | 15-Mar-2016 |                          |                    |            | 22-Mar-2016               | 11-Sep-2016       | П              |
| B035_0.0-0.2,                        | B035_0.5-0.6,        |             |                          |                    |            |                           |                   |                |
| B034_0.0-0.2,                        | B034_0.5-0.6,        |             |                          |                    |            |                           |                   |                |
| B033_0.0-0.2,                        | B033_0.5-0.6,        |             |                          |                    |            |                           |                   |                |
| B032_0.0-0.2,                        | B032_0.5-0.6,        |             |                          |                    |            |                           |                   |                |
| B031 0.0-0.2,                        | B031 0.5-0.6,        |             |                          |                    |            |                           |                   |                |
| B016.5 0.0-0.2,                      | B016.5 0.5-0.6,      |             |                          |                    |            |                           |                   |                |
| B016 0.0-0.2,                        | B015.5 0.5-0.6,      |             |                          |                    |            |                           |                   |                |
| B014 0.0-0.2,                        | B014 0.5-0.6         |             |                          |                    |            |                           |                   |                |
| Snap Lock Bag: Separate bag received | <br>d (EA200)        |             |                          |                    |            |                           |                   |                |
| A003.5_0.0-0.2,                      | A005.5_0.0-0.2,      | 16-Mar-2016 |                          |                    |            | 22-Mar-2016               | 12-Sep-2016       | п              |
| A006.5_0.0-0.2,                      | A007.5_0.0-0.2,      |             |                          |                    |            |                           |                   |                |
| A008.5_0.0-0.2,                      | A013.5_0.0-0.2,      |             |                          |                    |            |                           |                   |                |
| A013.5 0.4-0.5,                      | A014.5 0.4-0.5,      |             |                          |                    |            |                           |                   |                |
| <br>C011_0.0-0.2,                    | C012_0.0-0.2         |             |                          |                    |            |                           |                   |                |

| Page       | 5 of 14                       |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: SOIL                          |                      |             |                |                         | Evaluation | : 🛛 = Holding time | breach □0 = With | in holding time |
|---------------------------------------|----------------------|-------------|----------------|-------------------------|------------|--------------------|------------------|-----------------|
| Method                                |                      | Sample Date | E              | ktraction / Preparation |            |                    | Analysis         |                 |
| Container / Client Sample ID(s)       |                      |             | Date extracted | Due for extraction      | Evaluation | Date analysed      | Due for analysis | Evaluation      |
| EG005T: Total Metals by ICP-AES       |                      |             |                |                         |            |                    |                  |                 |
| Soil Glass ⊡ar - ⊡npreserved (EG005T) |                      |             |                |                         |            |                    |                  |                 |
| B001_0.0-0.2,                         | B003.5_0.0-0.2,      | 14-Mar-2016 | 22-Mar-2016    | 10-Sep-2016             | п          | 23-Mar-2016        | 10-Sep-2016      | П               |
| B007.5_0.0-0.2,                       | B009.5_0.0-0.2,      |             |                |                         |            |                    |                  |                 |
| B010.5_0.0-0.2,                       | B012.5_0.0-0.2,      |             |                |                         |            |                    |                  |                 |
| QC150                                 |                      |             |                |                         |            |                    |                  |                 |
| Soil Glass ⊡ar -                      |                      |             |                |                         |            |                    |                  |                 |
| B036_0.0-0.2,                         | B036_0.5-0.6,        | 15-Mar-2016 | 22-Mar-2016    | 11-Sep-2016             | п          | 23-Mar-2016        | 11-Sep-2016      | П               |
| B035_0.0-0.2,                         | B035_0.5-0.6,        |             |                |                         |            |                    |                  |                 |
| B034_0.0-0.2,                         | B034_0.5-0.6,        |             |                |                         |            |                    |                  |                 |
| B033_0.0-0.2,                         | B033_0.5-0.6,        |             |                |                         |            |                    |                  |                 |
| B032_0.0-0.2,                         | B032_0.5-0.6,        |             |                |                         |            |                    |                  |                 |
| B031_0.0-0.2,                         | B031_0.5-0.6,        |             |                |                         |            |                    |                  |                 |
| B016.5_0.0-0.2,                       | B016.5_0.5-0.6,      |             |                |                         |            |                    |                  |                 |
| B016_0.0-0.2,                         | B015.5_0.5-0.6,      |             |                |                         |            |                    |                  |                 |
| B014_0.0-0.2,                         | QC152, B014_0.5-0.6, |             |                |                         |            |                    |                  |                 |
| QC154                                 |                      |             |                |                         |            |                    |                  |                 |
| Soil Glass ⊡ar - ⊡npreserved (EG005T) |                      |             |                |                         |            |                    |                  |                 |
| A003.5_0.0-0.2,                       | A005.5_0.0-0.2,      | 16-Mar-2016 | 22-Mar-2016    | 12-Sep-2016             | п          | 23-Mar-2016        | 12-Sep-2016      | П               |
| A006.5_0.0-0.2,                       | A007.5_0.0-0.2,      |             |                |                         |            |                    |                  |                 |
| A008.5_0.0-0.2,                       | A013.5_0.0-0.2,      |             |                |                         |            |                    |                  |                 |
| A013.5_0.4-0.5,                       | A014.5_0.4-0.5,      |             |                |                         |            |                    |                  |                 |
| C011_0.0-0.2,                         | <br>C012_0.0-0.2,    |             |                |                         |            |                    |                  |                 |
| QC157                                 | _                    |             |                |                         |            |                    |                  |                 |

| Page       | : 6 of 14                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: SOIL                             |                      |             |                |                        | Evaluation | : 🛛 = Holding time | breach □0 = Withi | n holding time |
|------------------------------------------|----------------------|-------------|----------------|------------------------|------------|--------------------|-------------------|----------------|
| Method                                   |                      | Sample Date | Ex             | traction / Preparation |            |                    | Analysis          |                |
| Container / Client Sample ID(s)          |                      |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis  | Evaluation     |
| EG035T: Total Recoverable Mercury by FIM | IS                   |             |                |                        |            |                    |                   |                |
| Soil Glass ⊡ar -                         |                      |             |                |                        |            |                    |                   |                |
| B001_0.0-0.2,                            | B003.5_0.0-0.2,      | 14-Mar-2016 | 22-Mar-2016    | 11-Apr-2016            | п          | 23-Mar-2016        | 11-Apr-2016       | П              |
| B007.5_0.0-0.2,                          | B009.5_0.0-0.2,      |             |                |                        |            |                    |                   |                |
| B010.5_0.0-0.2,                          | B012.5_0.0-0.2,      |             |                |                        |            |                    |                   |                |
| QC150                                    |                      |             |                |                        |            |                    |                   |                |
| Soil Glass □ar - □npreserved (EG035T)    |                      |             |                |                        |            |                    |                   |                |
| B036_0.0-0.2,                            | B036_0.5-0.6,        | 15-Mar-2016 | 22-Mar-2016    | 12-Apr-2016            | п          | 23-Mar-2016        | 12-Apr-2016       | П              |
| B035_0.0-0.2,                            | B035_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B034_0.0-0.2,                            | B034_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B033_0.0-0.2,                            | B033_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B032_0.0-0.2,                            | B032_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B031_0.0-0.2,                            | B031_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B016.5 0.0-0.2,                          | B016.5 0.5-0.6,      |             |                |                        |            |                    |                   |                |
| B016 0.0-0.2,                            | B015.5 0.5-0.6,      |             |                |                        |            |                    |                   |                |
| B014 0.0-0.2,                            | QC152, B014 0.5-0.6, |             |                |                        |            |                    |                   |                |
| QC154                                    | · _ ·                |             |                |                        |            |                    |                   |                |
| Soil Glass □ar - □npreserved (EG035T)    |                      |             |                |                        |            |                    |                   |                |
| A003.5_0.0-0.2,                          | A005.5_0.0-0.2,      | 16-Mar-2016 | 22-Mar-2016    | 13-Apr-2016            | п          | 23-Mar-2016        | 13-Apr-2016       | п              |
| A006.5_0.0-0.2,                          | A007.5_0.0-0.2,      |             |                |                        |            |                    |                   |                |
| A008.5 0.0-0.2,                          | A013.5 0.0-0.2,      |             |                |                        |            |                    |                   |                |
| A013.5 0.4-0.5,                          | A014.5 0.4-0.5,      |             |                |                        |            |                    |                   |                |
| <br>C011 0.0-0.2,                        | C012 0.0-0.2,        |             |                |                        |            |                    |                   |                |
| QC157                                    | _ /                  |             |                |                        |            |                    |                   |                |

| Page       | : 7 of 14                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: SOIL                            |                      |             |                |                        | Evaluation | : 🛛 = Holding time | breach □□ = Withi | n holding time |
|-----------------------------------------|----------------------|-------------|----------------|------------------------|------------|--------------------|-------------------|----------------|
| Method                                  |                      | Sample Date | Ex             | traction / Preparation |            |                    | Analysis          |                |
| Container / Client Sample ID(s)         |                      |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis  | Evaluation     |
| EP080/071: Total Petroleum Hydrocarbons |                      |             |                |                        |            |                    |                   |                |
| Soil Glass ⊡ar - ⊡npreserved (EP071)    |                      |             |                |                        |            |                    |                   |                |
| B001_0.0-0.2,                           | B003.5_0.0-0.2,      | 14-Mar-2016 | 21-Mar-2016    | 28-Mar-2016            | п          | 23-Mar-2016        | 30-Apr-2016       | П              |
| B007.5_0.0-0.2,                         | B009.5_0.0-0.2,      |             |                |                        |            |                    |                   |                |
| B010.5_0.0-0.2,                         | B012.5_0.0-0.2,      |             |                |                        |            |                    |                   |                |
| QC150                                   |                      |             |                |                        |            |                    |                   |                |
| Soil Glass ⊡ar - ⊡npreserved (EP071)    |                      |             |                |                        |            |                    |                   |                |
| B036_0.0-0.2,                           | B036_0.5-0.6,        | 15-Mar-2016 | 21-Mar-2016    | 29-Mar-2016            | п          | 23-Mar-2016        | 30-Apr-2016       | П              |
| B035_0.0-0.2,                           | B035_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B034_0.0-0.2,                           | B034_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B033_0.0-0.2,                           | B033_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B032_0.0-0.2,                           | B032_0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B031 0.0-0.2,                           | B031 0.5-0.6,        |             |                |                        |            |                    |                   |                |
| B016.5 0.0-0.2,                         | B016.5 0.5-0.6,      |             |                |                        |            |                    |                   |                |
| B016 0.0-0.2.                           | B015.5 0.5-0.6.      |             |                |                        |            |                    |                   |                |
| B014 0.0-0.2.                           | QC152. B014 0.5-0.6. |             |                |                        |            |                    |                   |                |
| QC154                                   |                      |             |                |                        |            |                    |                   |                |
| Soil Glass 🗆 ar - 🗆 npreserved (EP071)  |                      |             |                |                        |            |                    |                   |                |
| A003.5_0.0-0.2,                         | A005.5_0.0-0.2,      | 16-Mar-2016 | 21-Mar-2016    | 30-Mar-2016            | п          | 23-Mar-2016        | 30-Apr-2016       | п              |
| A006.5 0.0-0.2,                         | A007.5 0.0-0.2,      |             |                |                        |            |                    |                   |                |
| A008.5 0.0-0.2,                         | A013.5 0.0-0.2,      |             |                |                        |            |                    |                   |                |
| A013.5 0.4-0.5,                         | <br>A014.5_0.4-0.5,  |             |                |                        |            |                    |                   |                |
| C011 0.0-0.2.                           | C012 0.0-0.2.        |             |                |                        |            |                    |                   |                |
| QC157                                   |                      |             |                |                        |            |                    |                   |                |

| Page       | : 8 of 14                     |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: SOIL                              |                      |             |                |                        | Evaluation | : I = Holding time | breach 🗆 = Withi | n holding time |
|-------------------------------------------|----------------------|-------------|----------------|------------------------|------------|--------------------|------------------|----------------|
| Method                                    |                      | Sample Date | Ex             | traction / Preparation |            |                    | Analysis         |                |
| Container / Client Sample ID(s)           |                      |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis | Evaluation     |
| EP075(SIM)B: Polynuclear Aromatic Hydrod  | carbons              |             |                |                        |            |                    |                  |                |
| Soil Glass ⊡ar - ⊡npreserved (EP075(SIM)) |                      |             |                |                        |            |                    |                  |                |
| B001_0.0-0.2,                             | B003.5_0.0-0.2,      | 14-Mar-2016 | 21-Mar-2016    | 28-Mar-2016            | П          | 22-Mar-2016        | 30-Apr-2016      |                |
| B007.5_0.0-0.2,                           | B009.5_0.0-0.2,      |             |                |                        |            |                    |                  |                |
| B010.5_0.0-0.2,                           | B012.5_0.0-0.2,      |             |                |                        |            |                    |                  |                |
| QC150                                     |                      |             |                |                        |            |                    |                  |                |
| Soil Glass ⊡ar - ⊡npreserved (EP075(SIM)) |                      |             |                |                        |            |                    |                  |                |
| B036_0.0-0.2,                             | B036_0.5-0.6,        | 15-Mar-2016 | 21-Mar-2016    | 29-Mar-2016            | п          | 22-Mar-2016        | 30-Apr-2016      | П              |
| B035_0.0-0.2,                             | B035_0.5-0.6,        |             |                |                        |            |                    |                  |                |
| B034_0.0-0.2,                             | B034_0.5-0.6,        |             |                |                        |            |                    |                  |                |
| B033_0.0-0.2,                             | B033_0.5-0.6,        |             |                |                        |            |                    |                  |                |
| B032_0.0-0.2,                             | B032_0.5-0.6,        |             |                |                        |            |                    |                  |                |
| B031_0.0-0.2,                             | B031_0.5-0.6,        |             |                |                        |            |                    |                  |                |
| B016.5_0.0-0.2,                           | B016.5_0.5-0.6,      |             |                |                        |            |                    |                  |                |
| B016 0.0-0.2,                             | B015.5 0.5-0.6,      |             |                |                        |            |                    |                  |                |
| B014 0.0-0.2,                             | QC152, B014 0.5-0.6, |             |                |                        |            |                    |                  |                |
| QC154                                     | · _ ·                |             |                |                        |            |                    |                  |                |
| Soil Glass ⊡ar - ⊡npreserved (EP075(SIM)) |                      |             |                |                        |            |                    |                  |                |
| A003.5_0.0-0.2,                           | A005.5_0.0-0.2,      | 16-Mar-2016 | 21-Mar-2016    | 30-Mar-2016            | п          | 22-Mar-2016        | 30-Apr-2016      | П              |
| A006.5_0.0-0.2,                           | A007.5_0.0-0.2,      |             |                |                        |            |                    |                  |                |
| A008.5_0.0-0.2,                           | A013.5_0.0-0.2,      |             |                |                        |            |                    |                  |                |
| A013.5_0.4-0.5,                           | A014.5_0.4-0.5,      |             |                |                        |            |                    |                  |                |
| <br>C011 0.0-0.2,                         | C012 0.0-0.2,        |             |                |                        |            |                    |                  |                |
| QC157                                     |                      |             |                |                        |            |                    |                  |                |

| Page       | : 9 of 14                     |
|------------|-------------------------------|
| Work Order | ES1606083                     |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: SOIL                          |                 |             |                |                        | Evaluation | : 🛛 = Holding time | breach □0 = Withi | n holding time |
|---------------------------------------|-----------------|-------------|----------------|------------------------|------------|--------------------|-------------------|----------------|
| Method                                |                 | Sample Date | Ex             | traction / Preparation |            |                    | Analysis          |                |
| Container / Client Sample ID(s)       |                 |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis  | Evaluation     |
| EP080/071: Total Petroleum Hydrocarbo | ns              |             |                |                        |            |                    |                   |                |
| Soil Glass ⊡ar - ⊡npreserved (EP080)  |                 |             |                |                        |            |                    |                   |                |
| B001_0.0-0.2,                         | B003.5_0.0-0.2, | 14-Mar-2016 | 18-Mar-2016    | 28-Mar-2016            | п          | 19-Mar-2016        | 28-Mar-2016       | П              |
| B007.5_0.0-0.2,                       | B009.5_0.0-0.2, |             |                |                        |            |                    |                   |                |
| B010.5_0.0-0.2,                       | B012.5_0.0-0.2  |             |                |                        |            |                    |                   |                |
| Soil Glass ⊡ar - ⊡npreserved (EP080)  |                 |             |                |                        |            |                    |                   |                |
| QC150,                                | QC153           | 14-Mar-2016 | 18-Mar-2016    | 28-Mar-2016            | п          | 21-Mar-2016        | 28-Mar-2016       | Π              |
| Soil Glass ⊡ar - ⊡npreserved (EP080)  |                 |             |                |                        |            |                    |                   |                |
| B036_0.0-0.2,                         | B036_0.5-0.6,   | 15-Mar-2016 | 18-Mar-2016    | 29-Mar-2016            | п          | 19-Mar-2016        | 29-Mar-2016       | П              |
| B035_0.0-0.2,                         | B035_0.5-0.6,   |             |                |                        |            |                    |                   |                |
| B034_0.0-0.2,                         | B034_0.5-0.6,   |             |                |                        |            |                    |                   |                |
| B033_0.0-0.2,                         | B033_0.5-0.6,   |             |                |                        |            |                    |                   |                |
| B032_0.0-0.2,                         | B032_0.5-0.6,   |             |                |                        |            |                    |                   |                |
| B031_0.0-0.2,                         | B031_0.5-0.6,   |             |                |                        |            |                    |                   |                |
| B016.5_0.0-0.2,                       | B016.5_0.5-0.6  |             |                |                        |            |                    |                   |                |
| Soil Glass ⊡ar - ⊡npreserved (EP080)  |                 |             |                |                        |            |                    |                   |                |
| B016_0.0-0.2,                         | B015.5_0.5-0.6, | 15-Mar-2016 | 18-Mar-2016    | 29-Mar-2016            | п          | 21-Mar-2016        | 29-Mar-2016       | П              |
| B014_0.0-0.2,                         | B014_0.5-0.6,   |             |                |                        |            |                    |                   |                |
| QC152,                                | QC154           |             |                |                        |            |                    |                   |                |
| Soil Glass ⊡ar - ⊡npreserved (EP080)  |                 |             |                |                        |            |                    |                   |                |
| A003.5_0.0-0.2,                       | A005.5_0.0-0.2, | 16-Mar-2016 | 18-Mar-2016    | 30-Mar-2016            | п          | 21-Mar-2016        | 30-Mar-2016       | П              |
| A006.5_0.0-0.2,                       | A007.5_0.0-0.2, |             |                |                        |            |                    |                   |                |
| A008.5_0.0-0.2,                       | A013.5_0.0-0.2, |             |                |                        |            |                    |                   |                |
| A013.5_0.4-0.5,                       | A014.5_0.4-0.5, |             |                |                        |            |                    |                   |                |
| C011_0.0-0.2,                         | C012_0.0-0.2,   |             |                |                        |            |                    |                   |                |
| QC157                                 |                 |             |                |                        |            |                    |                   |                |

Matrix: WATER Evaluation:  $\square$  = Holding time breach  $\square$  = Within holding time. Method Sample Date Analysis Extraction / Preparation Container / Client Sample ID(s) Due for extraction Evaluation Due for analysis Evaluation Date extracted Date analysed EG020F: Dissolved Metals by ICP-MS Clear Plastic Bottle - Nitric Acid□Filtered (EG020A-F) 11-Sep-2016 15-Mar-2016 22-Mar-2016 QC156 --------------П Clear Plastic Bottle - Nitric Acid Filtered (EG020A-F) 12-Sep-2016 QC161 16-Mar-2016 22-Mar-2016 П ------------EG035F: Dissolved Mercury by FIMS Clear Plastic Bottle - Nitric Acid Filtered (EG035F) QC156 15-Mar-2016 23-Mar-2016 12-Apr-2016 Π ------------Clear Plastic Bottle - Nitric Acid Filtered (EG035F) 16-Mar-2016 23-Mar-2016 13-Apr-2016 QC161 ---------П ----

| Page       | : 10 of 14                    |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: WATER                                          |     |             |                |                       | Evaluation: | = Holding time | breach □0 = Within | holding time |
|--------------------------------------------------------|-----|-------------|----------------|-----------------------|-------------|----------------|--------------------|--------------|
| Method                                                 |     | Sample Date | Ext            | raction / Preparation |             |                | Analysis           |              |
| Container / Client Sample ID(s)                        |     |             | Date extracted | Due for extraction    | Evaluation  | Date analysed  | Due for analysis   | Evaluation   |
| EP080/071: Total Petroleum Hydrocarbons                |     |             |                |                       |             |                |                    |              |
| Amber Glass Bottle - ⊡npreserved (EP071)<br>QC156      |     | 15-Mar-2016 | 18-Mar-2016    | 22-Mar-2016           | П           | 18-Mar-2016    | 27-Apr-2016        | П            |
| Amber Glass Bottle - ⊡npreserved (EP071)<br>QC161      |     | 16-Mar-2016 | 18-Mar-2016    | 23-Mar-2016           | п           | 18-Mar-2016    | 27-Apr-2016        | П            |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons         |     |             |                |                       |             |                |                    |              |
| Amber Glass Bottle -  preserved (EP075(SIM)) QC156     |     | 15-Mar-2016 | 18-Mar-2016    | 22-Mar-2016           | п           | 18-Mar-2016    | 27-Apr-2016        | П            |
| Amber Glass Bottle - ⊡npreserved (EP075(SIM))<br>QC161 |     | 16-Mar-2016 | 18-Mar-2016    | 23-Mar-2016           | п           | 18-Mar-2016    | 27-Apr-2016        | П            |
| EP080/071: Total Petroleum Hydrocarbons                |     |             |                |                       |             |                |                    |              |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>QC156        |     | 15-Mar-2016 | 18-Mar-2016    | 29-Mar-2016           | п           | 18-Mar-2016    | 29-Mar-2016        | П            |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>QC161, QC1   | 162 | 16-Mar-2016 | 18-Mar-2016    | 30-Mar-2016           | п           | 18-Mar-2016    | 30-Mar-2016        | П            |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                         |            |       |         | Evaluatio | n: 🛛 = Quality Co | ontrol frequency | not within specification <a>□</a> = Quality Control frequency within specification. |
|--------------------------------------|------------|-------|---------|-----------|-------------------|------------------|-------------------------------------------------------------------------------------|
| Quality Control Sample Type          |            | Count |         |           | Rate (%)          |                  | Quality Control Specification                                                       |
| Analytical Methods                   | Method     | OC    | Reaular | Actual    | Expected          | Evaluation       |                                                                                     |
| Laboratory Duplicates (DUP)          |            |       |         |           |                   |                  |                                                                                     |
| Moisture Content                     | EA055-103  | 6     | 60      | 10.00     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| PAH/Phenols (SIM)                    | EP075(SIM) | 4     | 38      | 10.53     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Mercury by FIMS                | EG035T     | 4     | 40      | 10.00     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Metals by ICP-AES              | EG005T     | 4     | 40      | 10.00     | 10.00             | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH - Semivolatile Fraction          | EP071      | 4     | 38      | 10.53     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH Volatiles/BTEX                   | EP080      | 4     | 40      | 10.00     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Laboratory Control Samples (LCS)     |            |       |         |           |                   |                  |                                                                                     |
| PAH/Phenols (SIM)                    | EP075(SIM) | 2     | 38      | 5.26      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Mercury by FIMS                | EG035T     | 2     | 40      | 5.00      | 5.00              | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Metals by ICP-AES              | EG005T     | 2     | 40      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH - Semivolatile Fraction          | EP071      | 2     | 38      | 5.26      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH Volatiles/BTEX                   | EP080      | 2     | 40      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Method Blanks (MB)                   |            |       |         |           |                   |                  |                                                                                     |
| PAH/Phenols (SIM)                    | EP075(SIM) | 2     | 38      | 5.26      | 5.00              | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Mercury by FIMS                | EG035T     | 2     | 40      | 5.00      | 5.00              | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Metals by ICP-AES              | EG005T     | 2     | 40      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH - Semivolatile Fraction          | EP071      | 2     | 38      | 5.26      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH Volatiles/BTEX                   | EP080      | 2     | 40      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Matrix Spikes (MS)                   |            |       |         |           |                   |                  |                                                                                     |
| PAH/Phenols (SIM)                    | EP075(SIM) | 2     | 38      | 5.26      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Mercury by FIMS                | EG035T     | 2     | 40      | 5.00      | 5.00              | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Total Metals by ICP-AES              | EG005T     | 2     | 40      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH - Semivolatile Fraction          | EP071      | 2     | 38      | 5.26      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH Volatiles/BTEX                   | EP080      | 2     | 40      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Matrix: WATER                        |            |       |         | Evaluatio | n: 🛛 = Quality Co | ontrol frequency | not within specification                                                            |
| Quality Control Sample Type          |            | Co    | ount    |           | Rate (%)          |                  | Quality Control Specification                                                       |
| Analytical Methods                   | Method     | QC    | Reaular | Actual    | Expected          | Evaluation       |                                                                                     |
| Laboratory Duplicates (DUP)          |            |       |         |           |                   |                  |                                                                                     |
| Dissolved Mercury by FIMS            | EG035F     | 2     | 16      | 12.50     | 10.00             | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Dissolved Metals by ICP-MS - Suite A | EG020A-F   | 4     | 29      | 13.79     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| PAH/Phenols (GC/MS - SIM)            | EP075(SIM) | 0     | 7       | 0.00      | 10.00             | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH - Semivolatile Fraction          | EP071      | 0     | 11      | 0.00      | 10.00             | п                | NEPM 2013 B3 & ALS QC Standard                                                      |
| TRH Volatiles/BTEX                   | EP080      | 2     | 20      | 10.00     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
| Laboratory Control Samples (LCS)     |            |       |         |           |                   |                  |                                                                                     |
| Dissolved Mercury by FIMS            | EG035F     | 1     | 16      | 6.25      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                      |
|                                      |            |       |         |           |                   |                  |                                                                                     |

| Page       | : 12 of 14                    |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Matrix: WATER                                |            |    |         | Evaluation | n: 🛛 = Quality Co | ntrol frequency | not within specification $\Box \Box$ = Quality Control frequency within specification. |
|----------------------------------------------|------------|----|---------|------------|-------------------|-----------------|----------------------------------------------------------------------------------------|
| Quality Control Sample Type                  |            | C  | ount    |            | Rate (%)          |                 | Quality Control Specification                                                          |
| Analytical Methods                           | Method     | OC | Reaular | Actual     | Expected          | Evaluation      |                                                                                        |
| Laboratory Control Samples (LCS) - Continued |            |    |         |            |                   |                 |                                                                                        |
| Dissolved Metals by ICP-MS - Suite A         | EG020A-F   | 2  | 29      | 6.90       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| PAH/Phenols (GC/MS - SIM)                    | EP075(SIM) | 1  | 7       | 14.29      | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| TRH - Semivolatile Fraction                  | EP071      | 1  | 11      | 9.09       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| TRH Volatiles/BTEX                           | EP080      | 1  | 20      | 5.00       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| Method Blanks (MB)                           |            |    |         |            |                   |                 |                                                                                        |
| Dissolved Mercury by FIMS                    | EG035F     | 1  | 16      | 6.25       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| Dissolved Metals by ICP-MS - Suite A         | EG020A-F   | 2  | 29      | 6.90       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| PAH/Phenols (GC/MS - SIM)                    | EP075(SIM) | 1  | 7       | 14.29      | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| TRH - Semivolatile Fraction                  | EP071      | 1  | 11      | 9.09       | 5.00              | п               | NEPM 2013 B3 & ALS QC Standard                                                         |
| TRH Volatiles/BTEX                           | EP080      | 1  | 20      | 5.00       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| Matrix Spikes (MS)                           |            |    |         |            |                   |                 |                                                                                        |
| Dissolved Mercury by FIMS                    | EG035F     | 1  | 16      | 6.25       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| Dissolved Metals by ICP-MS - Suite A         | EG020A-F   | 2  | 29      | 6.90       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| PAH/Phenols (GC/MS - SIM)                    | EP075(SIM) | 0  | 7       | 0.00       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| TRH - Semivolatile Fraction                  | EP071      | 0  | 11      | 0.00       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |
| TRH Volatiles/BTEX                           | EP080      | 1  | 20      | 5.00       | 5.00              | П               | NEPM 2013 B3 & ALS QC Standard                                                         |



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                   | Method     | Matrix | Method Descriptions                                                                                                                                                                                              |
|--------------------------------------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                     | EA055-103  | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time). |
| Asbestos Identification in Soils     | EA200      | SOIL   | AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples                                                                                                                             |
|                                      |            |        | Analysis by Polarised Light Microscopy including dispersion staining                                                                                                                                             |
| Total Metals by ICP-AES              | EG005T     | SOIL   | In house: Referenced to APHA 3120 USEPA SW 846 - 6010. Metals are determined following an appropriate                                                                                                            |
|                                      |            |        | acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic                                                                                                          |
|                                      |            |        | spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix                                                                                                       |
|                                      |            |        | matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                       |
| Total Mercury by FIMS                | EG035T     | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)                                                                                                           |
|                                      |            |        | FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an                                                                                                     |
|                                      |            |        | appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then                                                                                                      |
|                                      |            |        | purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This                                                                                                    |
|                                      |            |        | method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                               |
| TRH - Semivolatile Fraction          | EP071      | SOIL   | In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and                                                                                                                |
|                                      |            |        | quantified against alkane standards over the range C10 - C40.                                                                                                                                                    |
| PAH/Phenols (SIM)                    | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS in Selective Ion                                                                                                           |
|                                      |            |        | Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is                                                                                                  |
|                                      |            |        | compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)                                                                                                                                                    |
| TRH Volatiles/BTEX                   | EP080      | SOIL   | In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS.                                                                                                           |
|                                      |            |        | Quantification is by comparison against an established 5 point calibration curve.                                                                                                                                |
| Dissolved Metals by ICP-MS - Suite A | EG020A-F   | WATER  | In house: Referenced to APHA 3125 USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered                                                                                                              |
|                                      |            |        | prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions                                                                                                |
|                                      |            |        | are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct                                                                                                       |
|                                      |            |        | mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                              |
| Dissolved Mercury by FIMS            | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)                                                                                                           |
|                                      |            |        | Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique.                                                                                                    |
|                                      |            |        | A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic                                                                                                     |
|                                      |            |        | mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell.                                                                                                      |
|                                      |            |        | Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM                                                                                                        |
|                                      |            |        | (2013) Schedule B(3)                                                                                                                                                                                             |
| TRH - Semivolatile Fraction          | EP071      | WATER  | In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and                                                                                                              |
|                                      |            |        | quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This                                                                                                     |
|                                      |            |        | method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                        |
| PAH/Phenols (GC/MS - SIM)            | EP075(SIM) | WATER  | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode                                                                                                         |
|                                      |            |        | and quantification is by comparison against an established 5 point calibration curve. This method is compliant                                                                                                   |
|                                      |            |        | with NEPM (2013) Schedule B(3)                                                                                                                                                                                   |

| Page       | : 14 of 14                    |
|------------|-------------------------------|
| Work Order | : ES1606083                   |
| Client     | : AECOM Australia Pty Ltd     |
| Project    | : 60488804/1.2 Caltex Kurnell |



| Analytical Methods                                         | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRH Volatiles/BTEX                                         | EP080   | WATER  | In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve.<br>Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)     |
| Preparation Methods                                        | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hot Block Digest for metals in soils sediments and sludges | EN69    | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202) |
| Methanolic Extraction of Soils for Purge and Trap          | ⊓ORG16  | SOIL   | In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                       |
| Tumbler Extraction of Solids                               | ORG17   | SOIL   | In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.                                                                                                                                                                          |
| Separatory Funnel Extraction of Liquids                    | ORG14   | WATER  | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.                            |
| Volatiles Water Preparation                                | ORG16-W | WATER  | A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.                                                                                                                                                                                                                                                                                                                                   |

# Frank Ferraro

From: Sent: To: Subject: Loren Schiavon Thursday, 31 March 2016 5:09 PM Fadi Soro; Frank Ferraro; Dianne Blane FW: Additional Analysis on Work order ES1606083

Hi Guys,

Can you please arrange the TCLP re-batch requested below?

Dianne – can you confirm what size bags were received for the asbestos and if a quant post reporting for abs/pres is possible at all?

Thanks.

Kind regards

## Loren Schiavon

CLIENT SERVICES CO-ORDINATOR ALS | Environmental Division

277-289 Woodpark Road Smithfield NSW 2164 Australia

**T** +61 2 8784 8503 **F** +61 2 8784 8500



Telephone : + 61-2-8784 8555

We are keen for your feedback! Please click here for your 1 question survey

EnviroMail #103 - VOCs Captured and Reported in C6-C10 TRH EnviroMail<sup>™</sup> 00 - Summary of all EnviroMails<sup>™</sup> by Category

www.alsglobal.com Subscribe to EnviroMail™ In Follow us on LinkedIn

From: Randall, Stephen [mailto:stephen.randall@aecom.com]
Sent: Thursday, 31 March 2016 2:46 PM
To: Loren Schiavon
Cc: Robinson, Scott (Sydney)
Subject: Additional Analysis on Work order ES1606083

Hi Loren,

Can I please request the following additional analyses for the above work order?

`Avelo

Asbestos Quantification:

- B001\_0.0-0.2
- B003.5\_0.0-0.2
- B007.5\_0.0-0.2
- B009.5\_0.0-0.2
- B010.5\_0.0-0.2
- B036\_0.0-0.2
- B036\_0.5-0.6
- B032\_0.0-0.2
- B016\_0.0-0.2
- A006.5\_0.0-0.2

- A013.5 0.0-0.2
- A013.5 0.4-0.5
- A014.5\_0.4-0.5

TCLP analysis:

- A005.5 0.0-0.2 on lead
- Ź B007.5\_0.0-0.2 on lead •
- 3 B035\_0.0-0.2 on lead ٠
- B009.5\_0.0-0.2 on mercury and lead •
- B012.5 0.0-0.2 on lead •
- 456 B016 0.0-0.2 on lead •

Please place these on normal TAT. If there are any issues with this please give me a call.

Thanks

Steve

## **Stephen Randall**

Senior Environmental Scientist D +61 2 8934 0594 M +61 413 074 243 stephen.randall@aecom.com

## AECOM

Level 21, 420 George Street, Sydney, NSW 2000 PO Box Q410, QVB PO, Sydney, NSW, 1230 T +61 2 8934 0000 F +61 2 8934 0001 aecom.com

## Built to deliver a better world

LinkedIn Twitter Facebook Instagram

ALS Group: Click here to report this email as spam.



#### **CERTIFICATE OF ANALYSIS** Work Order : ES1607003 Page : 1 of 6 Amendment :1 Client Laboratory : AECOM Australia Pty Ltd : Environmental Division Sydney Contact : MR STEPHEN RANDALL Contact : Loren Schiavon Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 21, 420 GEORGE STREET SYDNEY NSW 2000 Telephone 02 8934 0000 Telephone : +61 2 8784 8503 Project : 60488804/1.2 Caltex Kurnell **Date Samples Received** : 31-Mar-2016 17:15 Order number 60488804/1.2 Date Analysis Commenced : 01-Apr-2016 C-O-C number : -----Issue Date : 22-Apr-2016 11:09 Sampler : KATE PIGRAM Site · ----Quote number NATA Accredited Laboratory 825 : -----Accredited for compliance with No. of samples received : 6 WORLD RECOGNISED ISO/IEC 17025. No. of samples analysed : 6 ACCREDITATION

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |



## **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

I This report has been amended and re-released to allow the reporting of additional analytical data.

| Page       | : 3 of 6                    |
|------------|-----------------------------|
| Work Order | ES1607003 Amendment 1       |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |     | A005.5_0.0-0.2 | B007.5_0.0-0.2 | B035_0.0-0.2  | B009.5_0.0-0.2 | B012.5_0.0-0.2 |               |
|------------------------------------|-----------------------------|-----|----------------|----------------|---------------|----------------|----------------|---------------|
|                                    | Client sampling date / time |     |                | [16-Mar-2016]  | [14-Mar-2016] | [15-Mar-2016]  | [14-Mar-2016]  | [14-Mar-2016] |
| Compound                           | CAS Number                  | LOR | Unit           | ES1607003-001  | ES1607003-002 | ES1607003-003  | ES1607003-004  | ES1607003-005 |
|                                    |                             |     |                | Result         | Result        | Result         | Result         | Result        |
| EN33: TCLP Leach                   |                             |     |                |                |               |                |                |               |
| Initial pH                         |                             | 0.1 | pH Unit        | 6.1            | 8.1           | 7.4            | 7.6            | 9.7           |
| After HCI pH                       |                             | 0.1 | pH Unit        | 1.5            | 1.7           | 1.6            | 1.7            | 2.7           |
| E Itraction Fluid Number           |                             | 1   | -              | 1              | 1             | 1              | 1              | 1             |
| Final pH                           |                             | 0.1 | pH Unit        | 4.9            | 5.0           | 4.8            | 5.0            | 6.2           |

| Page       | : 4 of 6                    |
|------------|-----------------------------|
| Work Order | ES1607003 Amendment 1       |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |     |         | B016_0.0-0.2  | <br> | <br> |
|------------------------------------|-----------------------------|-----|---------|---------------|------|------|
|                                    | Client sampling date / time |     |         | [15-Mar-2016] | <br> | <br> |
| Compound                           | CAS Number                  | LOR | Unit    | ES1607003-006 | <br> | <br> |
|                                    |                             |     |         | Result        | <br> | <br> |
| EN33: TCLP Leach                   |                             |     |         |               |      |      |
| Initial pH                         |                             | 0.1 | pH Unit | 8.8           | <br> | <br> |
| After HCI pH                       |                             | 0.1 | pH Unit | 1.7           | <br> | <br> |
| E Iraction Fluid Number            |                             | 1   | -       | 1             | <br> | <br> |
| Final pH                           |                             | 0.1 | pH Unit | 5.2           | <br> | <br> |

| Page       | 5 of 6                      |
|------------|-----------------------------|
| Work Order | ES1607003 Amendment 1       |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: TCLP LEACHATE          | Client sample ID            |       |      | A005.5_0.0-0.2 | B007.5_0.0-0.2 | B035_0.0-0.2  | B009.5_0.0-0.2 | B012.5_0.0-0.2 |
|------------------------------------|-----------------------------|-------|------|----------------|----------------|---------------|----------------|----------------|
| (Matrix: WATER)                    |                             |       |      |                |                |               | —              |                |
|                                    | Client sampling date / time |       |      | [16-Mar-2016]  | [14-Mar-2016]  | [15-Mar-2016] | [14-Mar-2016]  | [14-Mar-2016]  |
| Compound                           | CAS Number                  | LOR   | Unit | ES1607003-001  | ES1607003-002  | ES1607003-003 | ES1607003-004  | ES1607003-005  |
|                                    |                             |       |      | Result         | Result         | Result        | Result         | Result         |
| EG005C: Leachable Metals by ICPAES |                             |       |      |                |                |               |                |                |
| Chromium                           | 7440-47-3                   | 0.1   | mg/L |                |                |               | <0.1           |                |
| Lead                               | 7439-92-1                   | 0.1   | mg/L | 0.1            | <0.1           | <0.1          | <0.1           | <0.1           |
| Nickel                             | 7440-02-0                   | 0.1   | mg/L |                |                |               | 0.1            |                |
| EG035C: Leachable Mercury by FIMS  |                             |       |      |                |                |               |                |                |
| Mercury                            | 7439-97-6                   | 0.001 | mg/L |                |                |               | <0.0010        |                |

| Page       | : 6 of 6                    |
|------------|-----------------------------|
| Work Order | ES1607003 Amendment 1       |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) | Client sample ID            |       |      | B016_0.0-0.2  | <br> | <br> |
|----------------------------------------------|-----------------------------|-------|------|---------------|------|------|
|                                              | Client sampling date / time |       |      | [15-Mar-2016] | <br> | <br> |
| Compound                                     | CAS Number                  | LOR   | Unit | ES1607003-006 | <br> | <br> |
|                                              |                             |       |      | Result        | <br> | <br> |
| EG005C: Leachable Metals by ICPAES           |                             |       |      |               |      |      |
| Chromium                                     | 7440-47-3                   | 0.1   | mg/L |               | <br> | <br> |
| Lead                                         | 7439-92-1                   | 0.1   | mg/L | <0.1          | <br> | <br> |
| Nickel                                       | 7440-02-0                   | 0.1   | mg/L |               | <br> | <br> |
| EG035C: Leachable Mercury by FIMS            |                             |       |      |               |      |      |
| Mercury                                      | 7439-97-6                   | 0.001 | mg/L |               | <br> | <br> |



#### **Q** ALITY CONTROL REPORT · ES1607003 Work Order Page : 1 of 3 :1 Amendment Client Laboratory : Environmental Division Sydney : AECOM Australia Pty Ltd : MR STEPHEN RANDALL Contact Contact : Loren Schiavon Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 21, 420 GEORGE STREET SYDNEY NSW 2000 Telephone Telephone : +61 2 8784 8503 02 8934 0000 Project : 60488804/1.2 Caltex Kurnell Date Samples Received : 31-Mar-2016 Order number : 60488804/1.2 Date Analysis Commenced : 01-Apr-2016 22-Apr-2016 C-O-C number Issue Date · \_\_\_\_ Sampler · KATE PIGRAM Site : -----Quote number : ----NATA Accredited Laboratory 825 Accredited for compliance with No. of samples received : 6 WORLD RECOGNISED ISO/IEC 17025. ACCREDITATION No. of samples analysed : 6 This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This Quality Control Report contains the following information: Laboratory Duplicate (DUP) Report Relative Percentage Difference (RPD) and Acceptance Limits Method Blank (MB) and Laboratory Control Spike (LCS) Report Recovery and Acceptance Limits Matrix Spike (MS) Report Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |

| Page :       | 2 of 3                      |
|--------------|-----------------------------|
| Work Order : | ES1607003 Amendment 1       |
| Client :     | AECOM Australia Pty Ltd     |
| Project :    | 60488804/1.2 Caltex Kurnell |



## **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

Indicates failed QC

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit Result between 10 and 20 times LOR: 0% - 50% Result = 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER                                   |                  |                  |            |        | Laboratory Duplicate (DUP) Report |                 |                  |         |                     |  |
|-----------------------------------------------------|------------------|------------------|------------|--------|-----------------------------------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID                                | Client sample ID | Method: Compound | CAS Number | LOR    | Unit                              | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EG005C: Leachable Metals by ICPAES (QC Lot: 412377) |                  |                  |            |        |                                   |                 |                  |         |                     |  |
| ES1606988-001                                       | Anonymous        | EG005C: Chromium | 7440-47-3  | 0.1    | mg/L                              | <0.1            | <0.1             | 0.00    | No Limit            |  |
|                                                     |                  | EG005C: Lead     | 7439-92-1  | 0.1    | mg/L                              | <0.1            | <0.1             | 0.00    | No Limit            |  |
|                                                     |                  | EG005C: Nickel   | 7440-02-0  | 0.1    | mg/L                              | <0.1            | <0.1             | 0.00    | No Limit            |  |
| ES1606993-004                                       | Anonymous        | EG005C: Chromium | 7440-47-3  | 0.1    | mg/L                              | <0.1            | <0.1             | 0.00    | No Limit            |  |
|                                                     |                  | EG005C: Lead     | 7439-92-1  | 0.1    | mg/L                              | 0.4             | 0.4              | 0.00    | No Limit            |  |
|                                                     |                  | EG005C: Nickel   | 7440-02-0  | 0.1    | mg/L                              | <0.1            | <0.1             | 0.00    | No Limit            |  |
| EG035C: Leachable Mercury by FIMS (QC Lot: 412347)  |                  |                  |            |        |                                   |                 |                  |         |                     |  |
| ES1606988-001                                       | Anonymous        | EG035C: Mercury  | 7439-97-6  | 0.0001 | mg/L                              | <0.0010         | <0.0010          | 0.00    | No Limit            |  |
| ES1607018-014                                       | Anonymous        | EG035C: Mercury  | 7439-97-6  | 0.0001 | mg/L                              | <0.0010         | <0.0010          | 0.00    | No Limit            |  |


## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                   |                   |        |                              | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------------|-------------------|--------|------------------------------|-------------------|---------------|------------------------------|-----------|------------|
|                                                    |                   |        |                              | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                   | CAS Number        | LOR    | Unit                         | Result            | Concentration | LCS                          | Low       | High       |
| EN33: TCLP Leach (QCLot: 411456)                   |                   |        |                              |                   |               |                              |           |            |
| EN33a: After HCl pH                                |                   | 0.1    | pH Unit                      | 1.0               |               |                              |           |            |
| EN33a: Final pH                                    |                   | 0.1    | pH Unit                      | 1.0               |               |                              |           |            |
| EN33a: Initial pH                                  |                   | 0.1    | pH Unit                      | 1.0               |               |                              |           |            |
| Sub-Matrix: WATER                                  | Method Blank (MB) |        | Laboratory Control Spike (LC | S) Report         |               |                              |           |            |
|                                                    |                   |        |                              | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                   | CAS Number        | LOR    | Unit                         | Result            | Concentration | LCS                          | Low       | High       |
| EG005C: Leachable Metals by ICPAES (QCLot: 412377) |                   |        |                              |                   |               |                              |           |            |
| EG005C: Chromium                                   | 7440-47-3         | 0.1    | mg/L                         | <0.1              | 0.1 mg/L      | 104                          | 88        | 114        |
| EG005C: Lead                                       | 7439-92-1         | 0.1    | mg/L                         | <0.1              | 0.1 mg/L      | 100                          | 80        | 118        |
| EG005C: Nickel                                     | 7440-02-0         | 0.1    | mg/L                         | <0.1              | 0.1 mg/L      | 102                          | 83        | 115        |
| EG035C: Leachable Mercury by FIMS (QCLot: 412347)  |                   |        |                              |                   |               |                              |           |            |
| EG035C: Mercury                                    | 7439-97-6         | 0.0001 | mg/L                         | <0.0001           | 0.01 mg/L     | 91.9                         | 79        | 109        |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                  |                  |            | Ма            | atrix Spike (MS) Repor | t          |           |
|----------------------|----------------------------------|------------------|------------|---------------|------------------------|------------|-----------|
|                      |                                  |                  |            | Spike         | SpikeRecovery(%)       | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                 | Method: Compound | CAS Number | Concentration | MS                     | Low        | High      |
| EG005C: Leachable    | Metals by ICPAES (QCLot: 412377) |                  |            |               |                        |            |           |
| ES1606988-002        | Anonymous                        | EG005C: Chromium | 7440-47-3  | 1 mg/L        | 103                    | 70         | 130       |
|                      |                                  | EG005C: Lead     | 7439-92-1  | 1 mg/L        | 104                    | 70         | 130       |
|                      |                                  | EG005C: Nickel   | 7440-02-0  | 1 mg/L        | 102                    | 70         | 130       |
| EG035C: Leachable    | Mercury by FIMS (QCLot: 412347)  |                  |            |               |                        |            |           |
| ES1606988-002        | Anonymous                        | EG035C: Mercury  | 7439-97-6  | 0.01 mg/L     | 89.8                   | 70         | 130       |



| QA/QC Compliance Assessment to assist with Quality Review |                               |                         |                                 |  |  |  |  |
|-----------------------------------------------------------|-------------------------------|-------------------------|---------------------------------|--|--|--|--|
| Work Order                                                | ES1607003                     | Page                    | : 1 of 4                        |  |  |  |  |
| Amendment                                                 | : 1                           |                         |                                 |  |  |  |  |
| Client                                                    | : AECOM Australia Pty Ltd     | Laboratory              | : Environmental Division Sydney |  |  |  |  |
| Contact                                                   | : MR STEPHEN RANDALL          | Telephone               | : +61 2 8784 8503               |  |  |  |  |
| Project                                                   | : 60488804/1.2 Caltex Kurnell | Date Samples Received   | : 31-Mar-2016                   |  |  |  |  |
| Site                                                      | :                             | Issue Date              | : 22-Apr-2016                   |  |  |  |  |
| Sampler                                                   | : KATE PIGRAM                 | No. of samples received | : 6                             |  |  |  |  |
| Order number                                              | : 60488804/1.2                | No. of samples analysed | : 6                             |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal e pert and e ternal Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## Summary of Outliers

### **Outliers : Quality Control Samples**

#### This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- □ <u>NO</u> Duplicate outliers occur.
- □ <u>NO</u> Laboratory Control outliers occur.
- □ <u>NO</u> Matri □ Spike outliers occur.
- **I** For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

### **Outliers : Analysis Holding Time Compliance**

□ <u>NO</u> Analysis Holding Time Outliers e ist.

### **Outliers : Frequency of Quality Control Samples**

□ <u>NO</u> Quality Control Sample Fre uency Outliers e ist.

Matrix: WATER



## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:  $\square$  = Holding time breach  $\square$  = Within holding time.

|                                               |                 |             |                |                        | Evaluation |               |                  | in nording arris |
|-----------------------------------------------|-----------------|-------------|----------------|------------------------|------------|---------------|------------------|------------------|
| Method                                        |                 | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |                  |
| Container / Client Sample ID(s)               |                 |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation       |
| EG005C: Leachable Metals by ICPAES            |                 |             |                |                        |            |               |                  |                  |
| Clear Plastic Bottle - Nitric Acid D nfiltere | d (EG005C)      |             |                |                        |            |               |                  |                  |
| A005.5_0.0-0.2,                               | B007.5_0.0-0.2, | 01-Apr-2016 | 04-Apr-2016    | 28-Sep-2016            | п          | 04-Apr-2016   | 28-Sep-2016      | П                |
| B035_0.0-0.2,                                 | B009.5_0.0-0.2, |             |                |                        |            |               |                  |                  |
| B012.5_0.0-0.2,                               | B016_0.0-0.2    |             |                |                        |            |               |                  |                  |
| EG035C: Leachable Mercury by FIMS             |                 |             |                |                        |            |               |                  |                  |
| Clear Plastic Bottle - Nitric Acid Dnfiltere  | d (EG035C)      |             |                |                        |            |               |                  |                  |
| B009.5_0.0-0.2                                |                 | 01-Apr-2016 |                |                        |            | 04-Apr-2016   | 29-Apr-2016      | П                |
|                                               |                 |             |                |                        |            |               |                  |                  |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                         |        |    |         | Evaluatio | n: 🛛 = Quality Co | ontrol frequency | not within specification $\Box$ = Quality Control frequency within specification. |
|--------------------------------------|--------|----|---------|-----------|-------------------|------------------|-----------------------------------------------------------------------------------|
| Quality Control Sample Type          |        | C  | ount    |           | Rate (%)          |                  | Quality Control Specification                                                     |
| Analytical Methods                   | Method | OC | Reaular | Actual    | Expected          | Evaluation       |                                                                                   |
| Method Blanks (MB)                   |        |    |         |           |                   |                  |                                                                                   |
| TCLP for Non & Semivolatile Analytes | EN33a  | 1  | 11      | 9.09      | 9.09              | П                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Matrix: WATER                        |        |    |         | Evaluatio | n: 🛛 = Quality Co | ontrol frequency | not within specification  are Quality Control frequency within specification.     |
| Quality Control Sample Type          |        | C  | ount    |           | Rate (%)          |                  | Quality Control Specification                                                     |
| Analytical Methods                   | Method | QC | Reaular | Actual    | Expected          | Evaluation       |                                                                                   |
| Laboratory Duplicates (DUP)          |        |    |         |           |                   |                  |                                                                                   |
| Leachable Mercury by FIMS            | EG035C | 2  | 11      | 18.18     | 10.00             | п                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Leachable Metals by ICPAES           | EG005C | 2  | 20      | 10.00     | 10.00             | П                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Laboratory Control Samples (LCS)     |        |    |         |           |                   |                  |                                                                                   |
| Leachable Mercury by FIMS            | EG035C | 1  | 11      | 9.09      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Leachable Metals by ICPAES           | EG005C | 1  | 20      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Method Blanks (MB)                   |        |    |         |           |                   |                  |                                                                                   |
| Leachable Mercury by FIMS            | EG035C | 1  | 11      | 9.09      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Leachable Metals by ICPAES           | EG005C | 1  | 20      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Matrix Spikes (MS)                   |        |    |         |           |                   |                  |                                                                                   |
| Leachable Mercury by FIMS            | EG035C | 1  | 11      | 9.09      | 5.00              | п                | NEPM 2013 B3 & ALS QC Standard                                                    |
| Leachable Metals by ICPAES           | EG005C | 1  | 20      | 5.00      | 5.00              | П                | NEPM 2013 B3 & ALS QC Standard                                                    |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                         | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Leachable Metals by ICPAES                                 | EG005C | SOIL   | In house: referenced to APHA 3120 USEPA SW 846 - 6010: The ICPAES technique ionises leachate sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                               |
| Leachable Mercury by FIMS                                  | EG035C | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise<br>any organic mercury compounds in the TCLP solution. The ionic mercury is reduced online to atomic mercury<br>vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance<br>against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Preparation Methods                                        | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Digestion for Total Recoverable Metals<br>in TCLP Leachate | EN25C  | SOIL   | In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                       |
| TCLP for Non & Semivolatile Analytes                       | EN33a  | SOIL   | In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.                                                                                                                                                                                                                                                                                     |

|                                                       |                                                                                                  | DOI ADOTORIT AD DAllamandad Drive O                                                        | IMUDGEE 1/29 Svdnev Road                                                                                                        | Mindree NSW 2850 · OPER                                                       | "H 10 Hood Way Malacia WA 6090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TWOI I ONGONG 99 Kennv Street Wollo                                     | MANNA NSW 2500                                                                                     |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| >                                                     |                                                                                                  | Ph: 07 7471 5600 E: gladstone@alsglob<br>I                                                 | sal.com Ph: 02 6372 6735 E: muggee.m                                                                                            | ail@alsglobal.com ⊦rn: vo                                                     | 9209 7655 E: samples.perm@aisglobai.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ph: 02 4225 3125 E: woilongong@aisgioc                                  | balloom                                                                                            |
| CLIENT: US                                            | RECOM Services                                                                                   | TURN                                                                                       |                                                                                                                                 | TAT (List due date):                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FOR LABORATORY USE ONLY                                                 | (Circle)                                                                                           |
| OFFICE: 420 george s                                  | st, sydney                                                                                       | (Standar<br>e.g Ult                                                                        | rd TAT may be longer for some tests INon Stan                                                                                   | ard or urgent TAT (List due date):                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Custody Seal Intact?                                                    | Yes No NJA                                                                                         |
| PROJECT: 6049                                         | 68804 Kurnell                                                                                    | PROJECT NO .: Jaste / ZALS O                                                               | NUOTE NO .: 5 Y/026/16                                                                                                          |                                                                               | COC SEQUENCE NUMBER (Circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free ice / frozen ice bricks present upo<br>receipt?                    | no ves No NA                                                                                       |
| ORDER NUMBER:                                         | O 4892 OU PURCHASE                                                                               |                                                                                            | TRY OF ORIGIN: Anstralia                                                                                                        | coc:                                                                          | 1 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Random Sample Temperature on Rece                                       | eiot. 5. 1-1 7                                                                                     |
| PROJECT MANAGER                                       | " St Kendall                                                                                     | CONTACT PH: (                                                                              | 54240 8/40                                                                                                                      | OF:                                                                           | (1) 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Other comment:                                                          |                                                                                                    |
| SAMPLER: 1                                            | K Wallker                                                                                        | SAMPLER MOBILE:                                                                            | OHOH 775 (7) RELINQUISH                                                                                                         | ED BY: RECE                                                                   | IVED BY: REL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LINQUISHED BY:                                                          | RECEIVED BY:                                                                                       |
| COC Emailed to ALS'                                   | 7 ( YES / NO)                                                                                    | EDD FORMAT (or d                                                                           | efault): EQuIS                                                                                                                  | ¥.                                                                            | Cont Ars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                                                                                                    |
| Email Reports to (will                                | default to PM if no other addresses are li                                                       | sted): NSW.Geoscience.Analytical@                                                          | urs.com + Project Manager DATE/TIME:                                                                                            | DATE                                                                          | TIME: DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TE/TIME:                                                                | DATE/TIME:                                                                                         |
| Email Invoice to (will d                              | default to PM if no other addresses are lis                                                      | ted):                                                                                      | 14/8                                                                                                                            | 6                                                                             | 11 1 01 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                                                                                    |
| COMMENTS/SPECIAL                                      | L HANDLING/STORAGE OR DISPOSAL                                                                   |                                                                                            |                                                                                                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                    |
| ALS USE ONLY                                          | MATRIX: Soli                                                                                     | DETAILS<br>d(S) Water(W)                                                                   | CONTAINER INFORMATION                                                                                                           | ANALYSIS REQUIR                                                               | ED including SUITES (NB. Suite Codes means specify Total (unfiltered bottle required) or Disso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ust be listed to attract suite price)                                   | Additional Information                                                                             |
|                                                       |                                                                                                  |                                                                                            |                                                                                                                                 | ation                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Con<br>dilu<br>ana                                                      | mments on likely contaminant levels,<br>tions, or samples requiring specific QC<br>lysis etc.      |
| LAB ID                                                | SAMPLE ID                                                                                        | DATE / TIME MATR                                                                           | IX TYPE & PRESERVATIVE                                                                                                          |                                                                               | Environmental Div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ision _                                                                 | •                                                                                                  |
|                                                       |                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                      |                                                                                                                                 | Asbes<br>Quen                                                                 | Sydney<br>Work Order Referer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥7<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 |                                                                                                    |
|                                                       | 8001-0.0-0.2                                                                                     | 5 91MC                                                                                     | 1x Scor, bag                                                                                                                    | - <                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                    |
| 2                                                     | B0035-00-02                                                                                      |                                                                                            |                                                                                                                                 | <                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                    |
| 3                                                     | B0075-0-0.2                                                                                      |                                                                                            |                                                                                                                                 | <u> </u>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                    |
|                                                       | R009.5-0-02                                                                                      |                                                                                            |                                                                                                                                 | ×                                                                             | Telephone : + 61-2-6784 8555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                                                    |
| Ś                                                     | BOID 5-0-02                                                                                      |                                                                                            |                                                                                                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                    |
| 6                                                     | B036-05-0.6                                                                                      | + 0-02                                                                                     |                                                                                                                                 | · <                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NAN TRACIE                                                              |                                                                                                    |
|                                                       | P036-02-06                                                                                       |                                                                                            | •                                                                                                                               |                                                                               | at / is vois New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carstan                                                                 | g -                                                                                                |
| 27                                                    | B032_0-0.2                                                                                       |                                                                                            |                                                                                                                                 |                                                                               | rganked By / Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         | <i>8</i> ,                                                                                         |
| 9                                                     | BC16-0-0.2                                                                                       |                                                                                            |                                                                                                                                 | ~                                                                             | telinguished By / D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                                                                                                    |
| ŝ                                                     | A006.5_0-0.2                                                                                     |                                                                                            |                                                                                                                                 |                                                                               | Connote / Caller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 647                                                                     | 5 <b>3</b>                                                                                         |
| N .                                                   | A013.5- n-0.2                                                                                    | -                                                                                          |                                                                                                                                 |                                                                               | CILL / C. C. C. L. C. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sheet.                                                                  |                                                                                                    |
| ·<br>[7                                               | A013.5-0.4-0.9                                                                                   | R                                                                                          | -                                                                                                                               | <del>ر</del><br>\                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                    |
| И                                                     | A014.5-0.4-0.5                                                                                   | V V                                                                                        |                                                                                                                                 | * ~                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                                                                                    |
| Water Container Codes:<br>V = VOA Vial HCI Preserv    | P = Unpreserved Plastic; N = Nitric Preserved<br>ved: VB = VOA Vial Sodium Bisulphate Preserve   | d Plastic; ORC = Nitric Preserved ORC; s                                                   | SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hyd.<br>= Airfreicht Unoreserved Vial SG = Sulfuric Preserved A                  | mber Glass: H = HCl preserved Plastic; AG = Amber (                           | Stass Unpreserved; AP - Airfreight Unpreserved; AP - Airfreight Unpreserved; Speciation bottle: SP - C: HS = HCI preserved Speciation bottle: SP - C: HS = HCI preserved Speciation bottle: SP - C: HS = HCI preserved; AP - Airfreight Unpreserved; P - Airfreight Unpreserve; AP - Airfreight Unpreserve; AP - Airfreight Unpreserve; AP - Airfreight Unpreserve; AP - Airfreight Unpreserve; AP - Airfreight Unpreserve; AP - Airfreight Unpreserve; AP - Airfreight Unpreserve; AP - Airf | ed Plastic<br>= Sulfuric Preserved Plastic: F = Formald                 | Jehyde Preserved Glass:                                                                            |
| V = VOA Vial HCI Preserv<br>Z = Zinc Acetate Preserve | ved; VB = VOA Vial Sodium Bisulphate Preserve<br>ed Bottle; E = EDTA Preserved Bottles; ST = Ste | ad; VS = VOA Vial Sulfuric Preserved; AV :<br>rrile Bottle; ASS = Plastic Bag for Acid Sul | = Airfreight Unpreserved Vial SG = Sulfuric Preserved ,<br>phate Soils; B = Unpreserved Bag; LI = Lugols Iodine Pr<br>Form Page | Imber Glass; H = HCl preserved Plast<br>sserved Bottles; STT = Sterile Sodium | ic; HS =<br>hiosulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HCI preserved Speciation bottle; SP<br>Preserved Bottles.               | HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formal<br>Preserved Bottles. |



# **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1607647                                                                             | Page                    | : 1 of 5                                              |
|-------------------------|---------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : AECOM SERVICES PTY LTD                                                              | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : MR STEPHEN RANDALL                                                                  | Contact                 | : Loren Schiavon                                      |
| Address                 | Supplier ID number - 1179447 Level 8, 420 GEORGE STREET<br>SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : +61 02 8925 5500                                                                    | Telephone               | : +61 2 8784 8503                                     |
| Project                 | : 60488804 Kurnell Task 1.3                                                           | Date Samples Received   | : 08-Apr-2016 14:35                                   |
| Order number            | : 60488804 1.3                                                                        | Date Analysis Commenced | : 12-Apr-2016                                         |
| C-O-C number            | :                                                                                     | Issue Date              | : 15-Apr-2016 10:32                                   |
| Sampler                 | : NICHOLAS WALKER                                                                     |                         | NATA                                                  |
| Site                    | :                                                                                     |                         |                                                       |
| Quote number            | :                                                                                     |                         | NATA Accredited Laboratory 825                        |
| No. of samples received | : 13                                                                                  |                         | Accredited for compliance with                        |
| No. of samples analysed | : 13                                                                                  |                         | ISO/IEC 17025. ACCREDITATION                          |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

## Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories   | Position            | Accreditation Category                   |
|---------------|---------------------|------------------------------------------|
| Shaun Spooner | Asbestos Identifier | Newcastle - Asbestos, Mayfield West, NSW |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- EA200N: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
   Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present)
   The Friable Asbestos weight is calculated from the extracted Fibrous Asbestos and Asbestos Fines as an equivalent weight of 100% Asbestos
   Percentages for Asbestos content in ACM are based on the 2013 NEPM default values.
  - All calculations of percentage Asbestos under this method are approximate and should be used as a guide only.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr'
   Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- EA200N: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2

| Page       | : 3 of 5                    |
|------------|-----------------------------|
| Work Order | : ES1607647                 |
| Client     | : AECOM SERVICES PTY LTD    |
| Project    | : 60488804 Kurnell Task 1.3 |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      |                     | Clie         | ent sample ID  | B001_0.0-0.2  | B003.5_0.0-0.2 | B007.5_0-0.2  | B009.5_0-0.2  | B010.5_0-0.2  |
|-----------------------------------------|---------------------|--------------|----------------|---------------|----------------|---------------|---------------|---------------|
|                                         | C                   | lient sampli | ng date / time | [07-Apr-2016] | [07-Apr-2016]  | [07-Apr-2016] | [07-Apr-2016] | [07-Apr-2016] |
| Compound                                | CAS Number          | LOR          | Unit           | ES1607647-001 | ES1607647-002  | ES1607647-003 | ES1607647-004 | ES1607647-005 |
|                                         |                     |              |                | Result        | Result         | Result        | Result        | Result        |
| EA200: AS 4964 - 2004 Identification of | f Asbestos in Soils | S            |                |               |                |               |               |               |
| Asbestos Detected                       | 1332-21-4           | 0.1          | g/kg           | Yes           | Yes            | Yes           | No            | No            |
| Asbestos Type                           | 1332-21-4           | -            |                | Am            | Ch             | Am            | -             | -             |
| Sample weight (dry)                     |                     | 0.01         | g              | 2100          | 2760           | 2850          | 2000          | 3240          |
| APPROVED IDENTIFIER:                    |                     | -            |                | S.SPOONER     | G.MORGAN       | G.MORGAN      | C.OWLER       | C.OWLER       |
| EA200N: Asbestos Quantification (non    | n-NATA)             |              |                |               |                |               |               |               |
| ø Free Fibres                           |                     | 5            | Fibres         | No            | No             | No            | No            | No            |
| Ø Friable Asbestos                      | 1332-21-4           | 0.0004       | g              | <0.0004       | 0.144          | <0.0004       | <0.0004       | <0.0004       |
| Ø Friable Asbestos (as Asbestos         | 1332-21-4           | 0.001        | % (w/w)        | <0.001        | 0.005          | <0.001        | <0.001        | <0.001        |
| in Soil)                                |                     |              |                |               |                |               |               |               |
| Ø Asbestos Containing Material          | 1332-21-4           | 0.1          | g              | <0.1          | <0.1           | <0.1          | <0.1          | <0.1          |
| Ø Asbestos Containing Material          | 1332-21-4           | 0.01         | % (w/w)        | <0.01         | <0.01          | <0.01         | <0.01         | <0.01         |
| (as 15□ Asbestos in ACM >7mm)           |                     |              |                |               |                |               |               |               |
| Ø Weight Sed for Calculation            |                     | 0.0001       | kg             | 2.10          | 2.76           | 2.85          | 2.00          | 3.24          |

| Page       | : 4 of 5                    |
|------------|-----------------------------|
| Work Order | : ES1607647                 |
| Client     | : AECOM SERVICES PTY LTD    |
| Project    | : 60488804 Kurnell Task 1.3 |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)     |                     | Clie         | ent sample ID  | B036_0-0.2    | B036-0.5-0.6  | B032_0-0.2    | B016_0-0.2    | A006.5_0-0.2  |
|----------------------------------------|---------------------|--------------|----------------|---------------|---------------|---------------|---------------|---------------|
|                                        | C                   | lient sampli | ng date / time | [07-Apr-2016] | [07-Apr-2016] | [07-Apr-2016] | [07-Apr-2016] | [07-Apr-2016] |
| Compound                               | CAS Number          | LOR          | Unit           | ES1607647-006 | ES1607647-007 | ES1607647-008 | ES1607647-009 | ES1607647-010 |
|                                        |                     |              |                | Result        | Result        | Result        | Result        | Result        |
| EA200: AS 4964 - 2004 Identification o | f Asbestos in Soils | 5            |                |               |               |               |               |               |
| Asbestos Detected                      | 1332-21-4           | 0.1          | g/kg           | Yes           | Yes           | No            | No            | Yes           |
| Asbestos Type                          | 1332-21-4           | -            |                | Am            | Ch + Am       | -             | -             | Am            |
| Sample weight (dry)                    |                     | 0.01         | g              | 2690          | 2400          | 1910          | 2450          | 2470          |
| APPROVED IDENTIFIER:                   |                     | -            |                | G.MORGAN      | S.SPOONER     | S.SPOONER     | G.MORGAN      | S.SPOONER     |
| EA200N: Asbestos Quantification (nor   | n-NATA)             |              |                |               |               |               |               |               |
| ø Free Fibres                          |                     | 5            | Fibres         | No            | No            | No            | No            | No            |
| Ø Friable Asbestos                     | 1332-21-4           | 0.0004       | g              | <0.0004       | 0.0035        | <0.0004       | <0.0004       | 0.210         |
| Ø Friable Asbestos (as Asbestos        | 1332-21-4           | 0.001        | % (w/w)        | <0.001        | <0.001        | <0.001        | <0.001        | 0.008         |
| in Soil)                               |                     |              |                |               |               |               |               |               |
| ØAsbestos Containing Material          | 1332-21-4           | 0.1          | g              | <0.1          | 17.8          | <0.1          | <0.1          | <0.1          |
| ØAsbestos Containing Material          | 1332-21-4           | 0.01         | % (w/w)        | <0.01         | 0.11          | <0.01         | <0.01         | <0.01         |
| (as 15□ Asbestos in ACM >7mm)          |                     |              |                |               |               |               |               |               |
| Ø Weight  Sed for  Calculation         |                     | 0.0001       | kg             | 2.69          | 2.40          | 1.91          | 2.45          | 2.47          |

| Page       | 5 of 5                      |
|------------|-----------------------------|
| Work Order | : ES1607647                 |
| Client     | : AECOM SERVICES PTY LTD    |
| Project    | : 60488804 Kurnell Task 1.3 |



| Sub-Matrix: SOIL<br>(Matrix: SOIL)      |                   | Clie        | ent sample ID  | A013.5_0-0.2  | A013.5_0.4-0.5 | A014.5_0.4-0.5 |        |        |
|-----------------------------------------|-------------------|-------------|----------------|---------------|----------------|----------------|--------|--------|
|                                         | Ci                | ient sampli | ng date / time | [07-Apr-2016] | [07-Apr-2016]  | [07-Apr-2016]  |        |        |
| Compound                                | CAS Number        | LOR         | Unit           | ES1607647-011 | ES1607647-012  | ES1607647-013  |        |        |
|                                         |                   |             |                | Result        | Result         | Result         | Result | Result |
| EA200: AS 4964 - 2004 Identification of | Asbestos in Soils | ;           |                |               |                |                |        |        |
| Asbestos Detected                       | 1332-21-4         | 0.1         | g/kg           | Yes           | No             | Yes            |        |        |
| Asbestos Type                           | 1332-21-4         | -           |                | Ch + Am       | -              | Am             |        |        |
| Sample weight (dry)                     |                   | 0.01        | g              | 2330          | 2940           | 3280           |        |        |
| APPROVED IDENTIFIER:                    |                   | -           |                | G.MORGAN      | G.MORGAN       | S.SPOONER      |        |        |
| EA200N: Asbestos Quantification (non    | -NATA)            |             |                |               |                |                |        |        |
| ø Free Fibres                           |                   | 5           | Fibres         | No            | No             | No             |        |        |
| Ø Friable Asbestos                      | 1332-21-4         | 0.0004      | g              | 0.284         | <0.0004        | 0.0033         |        |        |
| Ø Friable Asbestos (as Asbestos         | 1332-21-4         | 0.001       | % (w/w)        | 0.012         | <0.001         | <0.001         |        |        |
| in Soil)                                |                   |             |                |               |                |                |        |        |
| Ø Asbestos Containing Material          | 1332-21-4         | 0.1         | g              | <0.1          | <0.1           | <0.1           |        |        |
| Ø Asbestos Containing Material          | 1332-21-4         | 0.01        | % (w/w)        | <0.01         | <0.01          | <0.01          |        |        |
| (as 15□ Asbestos in ACM >7mm)           |                   |             |                |               |                |                |        |        |
| Ø Weight Sed for Calculation            |                   | 0.0001      | kg             | 2.33          | 2.94           | 3.28           |        |        |

# Analytical Results

Descriptive Results

Sub-Matrix: SOIL

| Method: Compound                                 | Client sample ID - Client sampling date / time | Analytical Results                                                                                                                                                                |
|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EA200: AS 4964 - 2004 Identification of Asbestos | s in Soils                                     |                                                                                                                                                                                   |
| EA200: Description                               | B001_0.0-0.2 - [07-Apr-2016]                   | Mid brown sandy soil with one loose bundle of friable asbestos fibres approx 2 x 1 x 0.5 mm.                                                                                      |
| EA200: Description                               | B003.5_0.0-0.2 - [07-Apr-2016]                 | Mid brown sandy soil with one piece of friable asbestos fibre board approx 25 x 15 x 1 mm.                                                                                        |
| EA200: Description                               | B007.5_0-0.2 - [07-Apr-2016]                   | Mid brown sandy soil with two bundles of friable asbestos fibres approx 3 x 1 x 1 mm.                                                                                             |
| EA200: Description                               | B009.5_0-0.2 - [07-Apr-2016]                   | Mid brown clay soil.                                                                                                                                                              |
| EA200: Description                               | B010.5_0-0.2 - [07-Apr-2016]                   | Mid brown clay soil.                                                                                                                                                              |
| EA200: Description                               | B036_0-0.2 - [07-Apr-2016]                     | Mid brown sandy soil with one bundle of friable asbestos fibres approx 3 x 1 x 1 mm.                                                                                              |
| EA200: Description                               | B036-0.5-0.6 - [07-Apr-2016]                   | Mid brown sandy soil with two pieces of bonded asbestos cement sheeting approx 60 x 30 x 5 mm plus several loose bundles of friable asbestos fibres approx 3 x 1 x 0.5 mm.        |
| EA200: Description                               | B032_0-0.2 - [07-Apr-2016]                     | Mid brown sandy soil with grey rocks.                                                                                                                                             |
| EA200: Description                               | B016_0-0.2 - [07-Apr-2016]                     | Mid brown sandy soil.                                                                                                                                                             |
| EA200: Description                               | A006.5_0-0.2 - [07-Apr-2016]                   | Mid brown sandy soil with several pieces of friable asbestos insulation material approx 5 x 4 x 2 mm with several loose bundles of friable asbestos fibres approx 2 x 1 x 0.5 mm. |
| EA200: Description                               | A013.5_0-0.2 - [07-Apr-2016]                   | Mid brown sandy soil with several pieces of friable asbestos insulation approx 25 x 20 x 2 mm plus several bundles of friable asbestos fibres approx 3 x 1 x 1 mm.                |
| EA200: Description                               | A013.5_0.4-0.5 - [07-Apr-2016]                 | Mid brown sandy soil.                                                                                                                                                             |
| EA200: Description                               | A014.5_0.4-0.5 - [07-Apr-2016]                 | Pale brown sandy soil with one loose bundle of friable asbestos fibres approx 3 x 2 x 1 mm.                                                                                       |



# **Q** ALITY CONTROL REPORT

| Work Order              | : ES1607647                                                                        | Page                    | : 1 of 3                                         |                  |
|-------------------------|------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------------|
| Client                  | AECOM SERVICES PTY LTD                                                             | Laboratory              | : Environmental Division Sydney                  |                  |
| Contact                 | : MR STEPHEN RANDALL                                                               | Contact                 | : Loren Schiavon                                 |                  |
| Address                 | Supplier ID number - 1179447 Level 8, 420 GEORGE STREET SYDNEY NSW, AUSTRALIA 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia | 2164             |
| Telephone               | : +61 02 8925 5500                                                                 | Telephone               | : +61 2 8784 8503                                |                  |
| Project                 | : 60488804 Kurnell Task 1.3                                                        | Date Samples Received   | : 08-Apr-2016                                    |                  |
| Order number            | : 60488804 1.3                                                                     | Date Analysis Commenced | 12-Apr-2016                                      |                  |
| C-O-C number            |                                                                                    | Issue Date              | 15-Apr-2016                                      |                  |
| Sampler                 | : NICHOLAS WALKER                                                                  |                         |                                                  | NATA             |
| Site                    | :                                                                                  |                         |                                                  |                  |
| Quote number            | :                                                                                  |                         | NATA Accredited Laboratory 825                   |                  |
| No. of samples received | : 13                                                                               |                         | Accredited for compliance with                   | WORLD RECOGNISED |
| No. of samples analysed | : 13                                                                               |                         | ISO/IEC 17025.                                   | ACCREDITATION    |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- □ Laboratory Duplicate (DUP) Report □ Relative Percentage Difference (RPD) and Acceptance Limits
- I Method Blank (MB) and Laboratory Control Spike (LCS) Report Recovery and Acceptance Limits
- Matrix Spike (MS) Report Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories   | Position            | Accreditation Category                   |
|---------------|---------------------|------------------------------------------|
| Shaun Spooner | Asbestos Identifier | Newcastle - Asbestos, Mayfield West, NSW |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit Result between 10 and 20 times LOR: 0% - 50% Result = 20 times LOR: 0% - 20%.

□ No Laboratory Duplicate (D□P) Results are re□uired to be reported.



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

□ No Method Blank (MB) or Laboratory Control Spike (LCS) Results are re uired to be reported.

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

□ No Matri Spike (MS) or Matri Spike Duplicate (MSD) Results are re uired to be reported.



| QA/QC Compliance Assessment to assist with Quality Review |                             |                         |                                 |  |
|-----------------------------------------------------------|-----------------------------|-------------------------|---------------------------------|--|
| Work Order                                                | : ES1607647                 | Page                    | : 1 of 4                        |  |
| Client                                                    | AECOM SERVICES PTY LTD      | Laboratory              | : Environmental Division Sydney |  |
| Contact                                                   | : MR STEPHEN RANDALL        | Telephone               | : +61 2 8784 8503               |  |
| Project                                                   | : 60488804 Kurnell Task 1.3 | Date Samples Received   | : 08-Apr-2016                   |  |
| Site                                                      | :                           | Issue Date              | : 15-Apr-2016                   |  |
| Sampler                                                   | : NICHOLAS WALKER           | No. of samples received | : 13                            |  |
| Order number                                              | : 60488804 1.3              | No. of samples analysed | : 13                            |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal e pert and e ternal Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## Summary of Outliers

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- □ <u>NO</u> Method Blank value outliers occur.
- □ <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- □ <u>NO</u> Matri □ Spike outliers occur.
- **I** For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

□ <u>NO</u> Analysis Holding Time Outliers e ist.

### **Outliers : Frequency of Quality Control Samples**

□ <u>NO</u> Quality Control Sample Fre⊡uency Outliers e ist.



## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Evaluation: | п = | Holding | time | breach |     | = Within | holding | time |
|-------------|-----|---------|------|--------|-----|----------|---------|------|
| Evaluation. | u – | noiuing | ume  | breach | ШЦ. |          | noiung  | ume. |

| Matrix: SOIL                            |                   |             |                          |                    | Evaluation | : 🛛 = Holding time | breach           | in holding time |
|-----------------------------------------|-------------------|-------------|--------------------------|--------------------|------------|--------------------|------------------|-----------------|
| Method Sar                              |                   | Sample Date | Extraction / Preparation |                    |            | Analysis           |                  |                 |
| Container / Client Sample ID(s)         |                   |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis | Evaluation      |
| EA200: AS 4964 - 2004 Identification of | Asbestos in Soils |             |                          |                    |            |                    |                  |                 |
| Snap Lock Bag: Separate bag received (  | (EA200)           |             |                          |                    |            |                    |                  |                 |
| B001_0.0-0.2,                           | B003.5_0.0-0.2,   | 07-Apr-2016 |                          |                    |            | 12-Apr-2016        | 04-Oct-2016      | П               |
| B007.5_0-0.2,                           | B009.5_0-0.2,     |             |                          |                    |            |                    |                  |                 |
| B010.5_0-0.2,                           | B036_0-0.2,       |             |                          |                    |            |                    |                  |                 |
| B036-0.5-0.6,                           | B032_0-0.2,       |             |                          |                    |            |                    |                  |                 |
| B016_0-0.2,                             | A006.5_0-0.2,     |             |                          |                    |            |                    |                  |                 |
| A013.5_0-0.2,                           | A013.5_0.4-0.5,   |             |                          |                    |            |                    |                  |                 |
| A014.5_0.4-0.5                          |                   |             |                          |                    |            |                    |                  |                 |
| EA200N: Asbestos Quantification (non-   | -NATA)            |             |                          |                    |            |                    |                  |                 |
| Snap Lock Bag: Separate bag received (  | (EA200N)          |             |                          |                    |            |                    |                  |                 |
| B001_0.0-0.2,                           | B003.5_0.0-0.2,   | 07-Apr-2016 |                          |                    |            | 12-Apr-2016        | 04-Oct-2016      | П               |
| B007.5_0-0.2,                           | B009.5_0-0.2,     |             |                          |                    |            |                    |                  |                 |
| B010.5_0-0.2,                           | B036_0-0.2,       |             |                          |                    |            |                    |                  |                 |
| B036-0.5-0.6,                           | B032_0-0.2,       |             |                          |                    |            |                    |                  |                 |
| B016_0-0.2,                             | A006.5_0-0.2,     |             |                          |                    |            |                    |                  |                 |
| A013.5_0-0.2,                           | A013.5_0.4-0.5,   |             |                          |                    |            |                    |                  |                 |
| A014.5_0.4-0.5                          |                   |             |                          |                    |            |                    |                  |                 |

| Page       | : 3 of 4                    |
|------------|-----------------------------|
| Work Order | : ES1607647                 |
| Client     | : AECOM SERVICES PTY LTD    |
| Project    | : 60488804 Kurnell Task 1.3 |



# **Quality Control Parameter Frequency Compliance**

□ No Quality Control data available for this section.



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods               | Method | Matrix | Method Descriptions                                                                                           |
|----------------------------------|--------|--------|---------------------------------------------------------------------------------------------------------------|
| Asbestos Identification in Soils | EA200  | SOIL   | AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples                          |
|                                  |        |        | Analysis by Polarised Light Microscopy including dispersion staining                                          |
| Asbestos Classification and      | EA200N | SOIL   | Asbestos Classification and Quantitation per NEPM 2013 with Confirmation of Identification by AS 4964 - 2004  |
| Quantitation per NEPM 2013       |        |        | Gravimetric determination of Asbestos Containing Material, Friable Asbestos and sample weight and calculation |
|                                  |        |        | of percentage concentrations per NEPM protocols. Friable Asbestos is reported as the equivalent weight in the |
|                                  |        |        | sample received after accounting for sub-sampling (where applicable for the <7mm and/or <2mm fractions).      |

|                |                                                                                                       | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |
|----------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                       | 550-51<br>#1,7,15,4,5,2,23,27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Loren Schiavon |                                                                                                       | Work my 20-4-16 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| From:          | Robinson, Scott (Sydney) <scott.e.robinson@aecor< td=""><td>om.com&gt;</td></scott.e.robinson@aecor<> | om.com>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sent:          | Wednesday, 20 April 2016 5:27 PM                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| То:            | Loren Schiavon; Randall, Stephen                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cer            | Dodd Katherine Lokude Chani                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Subject:

Dodd, Katherine; Lokuge, Chani RE: Additional Analysis on Work order ES1606083 - Caltex Kurnell

Loren:

Can you add the following in green to Steve's request below:

TCLP analysis:

B001 0.0-0.2 - Mercury and Benzo(a)pyrenet B036\_0.0-0.2 on Nickel B032\_0.0-0.2 on Nickel B009.5\_0.0-0.2 on Nickel, Chromium - - - SUFFICIENT VOLUME COMAINING 1 B010.5 0.0-0.2 on Nickel, Mercury, Lead B003.5\_0.0-0.2 on Nickel, Chromium, Lead B014\_0.0-0.2 - Benzo(a)pyrene

A006.5 0.0-0.2 - Lead and Benzo(a)pyrene

#### Scott Robinson

**Technical Director - Environment** D +61 2 8934 0785 M +61 400 770 026 scott.e.robinson@aecom.com

#### AECOM

Level 21, 420 George Street, Sydney, NSW 2000 PO Box Q410, QVB PO, Sydney, NSW, 1230 T+61 2 8934 0000 F+61 2 8934 0001 aecom.com

#### Built to deliver a better world

LinkedIn Twitter Facebook Instagram

From: Loren Schiavon [mailto:loren.schiavon@alsglobal.com] Sent: Wednesday, 20 April 2016 4:53 PM To: Randall, Stephen Cc: Robinson, Scott (Sydney) Subject: RE: Additional Analysis on Work order ES1606083

Hi Steve,

I'll arrange this re-batch for you now.

Cheers.

Kind regards

## Loren Schiavon

CLIENT SERVICES CO-ORDINATOR ALS | Environmental Division

277-289 Woodpark Road Smithfield NSW 2164 Australia





Telephone: + 61-2-8784 8555



# **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1608579                                        | Page                    | : 1 of 7                                              |
|-------------------------|--------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : AECOM Australia Pty Ltd                        | Laboratory              | Environmental Division Sydney                         |
| Contact                 | : MR STEPHEN RANDALL                             | Contact                 | : Loren Schiavon                                      |
| Address                 | : LEVEL 21, 420 GEORGE STREET<br>SYDNEY NSW 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : 02 8934 0000                                   | Telephone               | : +61 2 8784 8503                                     |
| Project                 | : 60488804/1.2 Caltex Kurnell                    | Date Samples Received   | : 20-Apr-2016 17:30                                   |
| Order number            | : 60488804/1.2                                   | Date Analysis Commenced | : 21-Apr-2016                                         |
| C-O-C number            | :                                                | Issue Date              | 28-Apr-2016 14:50                                     |
| Sampler                 | : KATE PIGRAM                                    |                         | NATA                                                  |
| Site                    | :                                                |                         |                                                       |
| Quote number            | :                                                |                         | NATA Accredited Laboratory 825                        |
| No. of samples received | : 7                                              |                         | Accredited for compliance with                        |
| No. of samples analysed | : 7                                              |                         | ISO/IEC 17025. ACCREDITATION                          |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator   | Sydney Organics, Smithfield, NSW   |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

| Page       | : 3 of 7                    |
|------------|-----------------------------|
| Work Order | : ES1608579                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |     |         | B001_0.0-0.2  | B036_0.0-0.2  | B032_0.0-0.2  | B010.5_0.0-0.2 | B003.5_0.0-0.2 |
|------------------------------------|-----------------------------|-----|---------|---------------|---------------|---------------|----------------|----------------|
|                                    | Client sampling date / time |     |         |               | [15-Mar-2016] | [15-Mar-2016] | [14-Mar-2016]  | [14-Mar-2016]  |
| Compound                           | CAS Number                  | LOR | Unit    | ES1608579-001 | ES1608579-002 | ES1608579-003 | ES1608579-004  | ES1608579-005  |
|                                    |                             |     |         | Result        | Result        | Result        | Result         | Result         |
| EN33: TCLP Leach                   |                             |     |         |               |               |               |                |                |
| Initial pH                         |                             | 0.1 | pH Unit | 6.7           | 8.1           | 8.3           | 7.5            | 7.3            |
| After HCI pH                       |                             | 0.1 | pH Unit | 2.0           | 1.7           | 2.0           | 1.8            | 1.8            |
| E traction Fluid Number            |                             | 1   | -       | 1             | 1             | 1             | 1              | 1              |
| Final pH                           |                             | 0.1 | pH Unit | 6.6           | 5.0           | 5.3           | 5.0            | 5.1            |

| Page       | : 4 of 7                    |
|------------|-----------------------------|
| Work Order | : ES1608579                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: SOIL<br>(Matrix: SOIL) | Client sample ID            |     |         | B014_0.0-0.2  | A006.5_0.0-0.2 | <br> |  |
|------------------------------------|-----------------------------|-----|---------|---------------|----------------|------|--|
|                                    | Client sampling date / time |     |         | [15-Mar-2016] | [16-Mar-2016]  | <br> |  |
| Compound                           | CAS Number                  | LOR | Unit    | ES1608579-006 | ES1608579-007  | <br> |  |
|                                    |                             |     |         | Result        | Result         | <br> |  |
| EN33: TCLP Leach                   |                             |     |         |               |                |      |  |
| Initial pH                         |                             | 0.1 | pH Unit | 7.1           | 5.2            | <br> |  |
| After HCI pH                       |                             | 0.1 | pH Unit | 1.6           | 1.6            | <br> |  |
| E Iraction Fluid Number            |                             | 1   | -       | 1             | 1              | <br> |  |
| Final pH                           |                             | 0.1 | pH Unit | 4.9           | 4.9            | <br> |  |

| Page       | 5 of 7                      |
|------------|-----------------------------|
| Work Order | : ES1608579                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) | Client sample ID            |       |      | B001_0.0-0.2  | B036_0.0-0.2  | B032_0.0-0.2  | B010.5_0.0-0.2 | B003.5_0.0-0.2 |
|----------------------------------------------|-----------------------------|-------|------|---------------|---------------|---------------|----------------|----------------|
|                                              | Client sampling date / time |       |      |               | [15-Mar-2016] | [15-Mar-2016] | [14-Mar-2016]  | [14-Mar-2016]  |
| Compound                                     | CAS Number                  | LOR   | Unit | ES1608579-001 | ES1608579-002 | ES1608579-003 | ES1608579-004  | ES1608579-005  |
|                                              |                             |       |      | Result        | Result        | Result        | Result         | Result         |
| EG005C: Leachable Metals by ICPAES           |                             |       |      |               |               |               |                |                |
| Chromium                                     | 7440-47-3                   | 0.1   | mg/L |               |               |               |                | <0.1           |
| Lead                                         | 7439-92-1                   | 0.1   | mg/L |               |               |               | 0.1            | <0.1           |
| Nickel                                       | 7440-02-0                   | 0.1   | mg/L |               | <0.1          | <0.1          | <0.1           | <0.1           |
| EG035C: Leachable Mercury by FIMS            |                             |       |      |               |               |               |                |                |
| Mercury                                      | 7439-97-6                   | 0.001 | mg/L | <0.0010       |               |               | <0.0010        |                |
| EP075(SIM)B: Polynuclear Aromatic Hyd        | drocarbons                  |       |      |               |               |               |                |                |
| Benzo(a)pyrene                               | 50-32-8                     | 0.5   | µg/L | <0.5          |               |               |                |                |
| EP075(SIM)S: Phenolic Compound Surr          | ogates                      |       |      |               |               |               |                |                |
| Phenol-d6                                    | 13127-88-3                  | 1     | %    | 29.8          |               |               |                |                |
| 2-Chlorophenol-D4                            | 93951-73-6                  | 1     | %    | 60.2          |               |               |                |                |
| 2.4.6-Tribromophenol                         | 118-79-6                    | 1     | %    | 64.8          |               |               |                |                |
| EP075(SIM)T: PAH Surrogates                  |                             |       |      |               |               |               |                |                |
| 2-Fluorobiphenyl                             | 321-60-8                    | 1     | %    | 67.3          |               |               |                |                |
| Anthracene-d10                               | 1719-06-8                   | 1     | %    | 78.3          |               |               |                |                |
| 4-Terphenyl-d14                              | 1718-51-0                   | 1     | %    | 71.6          |               |               |                |                |

| Page       | : 6 of 7                    |
|------------|-----------------------------|
| Work Order | : ES1608579                 |
| Client     | : AECOM Australia Pty Ltd   |
| Project    | 60488804/1.2 Caltex Kurnell |



| Sub-Matrix: TCLP LEACHATE<br>(Matrix: WATER) | Client sample ID |             |                | B014_0.0-0.2  | A006.5_0.0-0.2 | <br> |  |
|----------------------------------------------|------------------|-------------|----------------|---------------|----------------|------|--|
|                                              | Cl               | ient sampli | ng date / time | [15-Mar-2016] | [16-Mar-2016]  | <br> |  |
| Compound                                     | CAS Number       | LOR         | Unit           | ES1608579-006 | ES1608579-007  | <br> |  |
|                                              |                  |             |                | Result        | Result         | <br> |  |
| EG005C: Leachable Metals by ICPAES           |                  |             |                |               |                |      |  |
| Chromium                                     | 7440-47-3        | 0.1         | mg/L           |               |                | <br> |  |
| Lead                                         | 7439-92-1        | 0.1         | mg/L           |               | 0.5            | <br> |  |
| Nickel                                       | 7440-02-0        | 0.1         | mg/L           |               |                | <br> |  |
| EG035C: Leachable Mercury by FIMS            |                  |             |                |               |                |      |  |
| Mercury                                      | 7439-97-6        | 0.001       | mg/L           |               |                | <br> |  |
| EP075(SIM)B: Polynuclear Aromatic Hyd        | drocarbons       |             |                |               |                |      |  |
| Benzo(a)pyrene                               | 50-32-8          | 0.5         | µg/L           | <0.5          | <0.5           | <br> |  |
| EP075(SIM)S: Phenolic Compound Surr          | ogates           |             |                |               |                |      |  |
| Phenol-d6                                    | 13127-88-3       | 1           | %              | 28.9          | 32.3           | <br> |  |
| 2-Chlorophenol-D4                            | 93951-73-6       | 1           | %              | 62.5          | 64.7           | <br> |  |
| 2.4.6-Tribromophenol                         | 118-79-6         | 1           | %              | 56.0          | 81.0           | <br> |  |
| EP075(SIM)T: PAH Surrogates                  |                  |             |                |               |                |      |  |
| 2-Fluorobiphenyl                             | 321-60-8         | 1           | %              | 69.4          | 78.7           | <br> |  |
| Anthracene-d10                               | 1719-06-8        | 1           | %              | 71.8          | 85.2           | <br> |  |
| 4-Terphenyl-d14                              | 1718-51-0        | 1           | %              | 72.7          | 83.7           | <br> |  |



# Surrogate Control Limits

| Sub-Matrix: TCLP LEACHATE                 |            | Recover | ry Limits (%) |
|-------------------------------------------|------------|---------|---------------|
| Compound                                  | CAS Number | Low     | High          |
| EP075(SIM)S: Phenolic Compound Surrogates |            |         |               |
| Phenol-d6                                 | 13127-88-3 | 10      | 44            |
| 2-Chlorophenol-D4                         | 93951-73-6 | 14      | 94            |
| 2.4.6-Tribromophenol                      | 118-79-6   | 17      | 125           |
| EP075(SIM)T: PAH Surrogates               |            |         |               |
| 2-Fluorobiphenyl                          | 321-60-8   | 20      | 104           |
| Anthracene-d10                            | 1719-06-8  | 27      | 113           |
| 4-Terphenyl-d14                           | 1718-51-0  | 32      | 112           |



# **Q** ALITY CONTROL REPORT

| Work Order              | : ES1608579                                      | Page                    | : 1 of 3                                              |
|-------------------------|--------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : AECOM Australia Pty Ltd                        | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : MR STEPHEN RANDALL                             | Contact                 | : Loren Schiavon                                      |
| Address                 | : LEVEL 21, 420 GEORGE STREET<br>SYDNEY NSW 2000 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | : 02 8934 0000                                   | Telephone               | : +61 2 8784 8503                                     |
| Project                 | : 60488804/1.2 Caltex Kurnell                    | Date Samples Received   | : 20-Apr-2016                                         |
| Order number            | : 60488804/1.2                                   | Date Analysis Commenced | : 21-Apr-2016                                         |
| C-O-C number            | :                                                | Issue Date              | : 28-Apr-2016                                         |
| Sampler                 | : KATE PIGRAM                                    |                         | NATA                                                  |
| Site                    | :                                                |                         |                                                       |
| Quote number            | :                                                |                         | NATA Accredited Laboratory 825                        |
| No. of samples received | : 7                                              |                         | Accredited for compliance with                        |
| No. of samples analysed | : 7                                              |                         | ISO/IEC 17025. ACCREDITATION                          |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- □ Laboratory Duplicate (DUP) Report □ Relative Percentage Difference (RPD) and Acceptance Limits
- I Method Blank (MB) and Laboratory Control Spike (LCS) Report Recovery and Acceptance Limits
- Matrix Spike (MS) Report Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator   | Sydney Organics, Smithfield, NSW   |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit Result between 10 and 20 times LOR: 0% - 50% Result = 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                             |                  |            |        |      | Laboratory D    | ouplicate (DUP) Report |         |                     |
|----------------------|-----------------------------|------------------|------------|--------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID            | Method: Compound | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG005C: Leachable N  | letals by ICPAES (QC Lot: 4 | 132774)          |            |        |      |                 |                        |         |                     |
| ES1608493-001        | Anonymous                   | EG005C: Chromium | 7440-47-3  | 0.1    | mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                             | EG005C: Lead     | 7439-92-1  | 0.1    | mg/L | 0.4             | 0.4                    | 0.00    | No Limit            |
|                      |                             | EG005C: Nickel   | 7440-02-0  | 0.1    | mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES1608587-001        | Anonymous                   | EG005C: Chromium | 7440-47-3  | 0.1    | mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                             | EG005C: Lead     | 7439-92-1  | 0.1    | mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                             | EG005C: Nickel   | 7440-02-0  | 0.1    | mg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| EG035C: Leachable N  | lercury by FIMS (QC Lot: 43 | 33666)           |            |        |      |                 |                        |         |                     |
| ES1608579-001        | B001_0.0-0.2                | EG035C: Mercury  | 7439-97-6  | 0.0001 | mg/L | <0.0010         | <0.0010                | 0.00    | No Limit            |



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                            |                     |        |         | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|---------------------------------------------|---------------------|--------|---------|-------------------|---------------|------------------------------|-----------|------------|
|                                             |                     |        |         | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                            | CAS Number          | LOR    | Unit    | Result            | Concentration | LCS                          | Low       | High       |
| EN33: TCLP Leach (QCLot: 431221)            |                     |        |         |                   |               |                              |           |            |
| EN33a: Initial pH                           |                     | 0.1    | pH Unit | 1.0               |               |                              |           |            |
| EN33a: After HCl pH                         |                     | 0.1    | pH Unit | 1.0               |               |                              |           |            |
| EN33a: Final pH                             |                     | 0.1    | pH Unit | 1.0               |               |                              |           |            |
| Sub-Matrix: WATER                           |                     |        |         | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|                                             |                     |        |         | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                            | CAS Number          | LOR    | Unit    | Result            | Concentration | LCS                          | Low       | High       |
| EG005C: Leachable Metals by ICPAES (QCLot:  | 432774)             |        |         |                   |               |                              |           |            |
| EG005C: Chromium                            | 7440-47-3           | 0.1    | mg/L    | <0.1              | 0.1 mg/L      | 102                          | 88        | 114        |
| EG005C: Lead                                | 7439-92-1           | 0.1    | mg/L    | <0.1              | 0.1 mg/L      | 108                          | 80        | 118        |
| EG005C: Nickel                              | 7440-02-0           | 0.1    | mg/L    | <0.1              | 0.1 mg/L      | 101                          | 83        | 115        |
| EG035C: Leachable Mercury by FIMS (QCLot: 4 | 433666)             |        |         |                   |               |                              |           |            |
| EG035C: Mercury                             | 7439-97-6           | 0.0001 | mg/L    | <0.0001           | 0.01 mg/L     | 100                          | 79        | 109        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarb | ons (QCLot: 432768) |        |         |                   |               |                              |           |            |
| EP075(SIM): Benzo(a)pyrene                  | 50-32-8             | 0.5    | µg/L    | <0.5              | 5 µg/L        | 97.5                         | 63        | 117        |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                    |                  |            | Ма            | trix Spike (MS) Repor | t          |           |
|----------------------|------------------------------------|------------------|------------|---------------|-----------------------|------------|-----------|
|                      |                                    |                  |            | Spike         | SpikeRecovery(%)      | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                   | Method: Compound | CAS Number | Concentration | MS                    | Low        | High      |
| EG005C: Leachable    | e Metals by ICPAES (QCLot: 432774) |                  |            |               |                       |            |           |
| ES1608539-001        | Anonymous                          | EG005C: Chromium | 7440-47-3  | 1 mg/L        | 103                   | 70         | 130       |
|                      |                                    | EG005C: Lead     | 7439-92-1  | 1 mg/L        | 101                   | 70         | 130       |
|                      |                                    | EG005C: Nickel   | 7440-02-0  | 1 mg/L        | 97.8                  | 70         | 130       |
| EG035C: Leachable    | e Mercury by FIMS (QCLot: 433666)  |                  |            |               |                       |            |           |
| ES1608579-004        | B010.5_0.0-0.2                     | EG035C: Mercury  | 7439-97-6  | 0.01 mg/L     | 102                   | 70         | 130       |



|              | QA/QC Compliance              | Assessment to assist with | h Quality Review                |
|--------------|-------------------------------|---------------------------|---------------------------------|
| Work Order   | ES1608579                     | Page                      | : 1 of 4                        |
| Client       | : AECOM Australia Pty Ltd     | Laboratory                | : Environmental Division Sydney |
| Contact      | : MR STEPHEN RANDALL          | Telephone                 | : +61 2 8784 8503               |
| Project      | : 60488804/1.2 Caltex Kurnell | Date Samples Received     | : 20-Apr-2016                   |
| Site         | :                             | Issue Date                | : 28-Apr-2016                   |
| Sampler      | : KATE PIGRAM                 | No. of samples received   | :7                              |
| Order number | : 60488804/1.2                | No. of samples analysed   | : 7                             |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal e pert and e ternal Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## Summary of Outliers

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matri Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers e ist.

### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Fre uency Outliers e list - please see following pages for full details.



#### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

Matrix: WATER

| Quality Control Sample Type | Со | unt     | Rate   | : (%)    | Quality Control Specification  |
|-----------------------------|----|---------|--------|----------|--------------------------------|
| Method                      | QC | Regular | Actual | Expected |                                |
| Laboratory Duplicates (DUP) |    |         |        |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 8       | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |    |         |        |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 8       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |

### Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \* = Holding time breach  $\Box \checkmark$  = Within holding time.

| Method                                                  |                 | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |
|---------------------------------------------------------|-----------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)                         |                 |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EG005C: Leachable Metals by ICPAES                      |                 |             |                |                        |            |               |                  |            |
| Clear Plastic Bottle - Nitric Acid   nfiltered (EG005C) |                 |             |                |                        |            |               |                  |            |
| B036_0.0-0.2,                                           | B032_0.0-0.2,   | 21-Apr-2016 | 22-Apr-2016    | 18-Oct-2016            | ✓          | 22-Apr-2016   | 18-Oct-2016      | ✓          |
| B010.5_0.0-0.2,                                         | B003.5_0.0-0.2, |             |                |                        |            |               |                  |            |
| A006.5_0.0-0.2                                          |                 |             |                |                        |            |               |                  |            |
| EG035C: Leachable Mercury by FIMS                       |                 |             |                |                        |            |               |                  |            |
| Clear Plastic Bottle - Nitric Acid Dnfiltered (EG035C)  |                 |             |                |                        |            |               |                  |            |
| B001_0.0-0.2,                                           | B010.5_0.0-0.2  | 21-Apr-2016 |                |                        |            | 26-Apr-2016   | 19-May-2016      | ✓          |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons          |                 |             |                |                        |            |               |                  |            |
| Amber Glass Bottle -  npreserved (EP075(SIM))           |                 |             |                |                        |            |               |                  |            |
| B001_0.0-0.2,                                           | B014_0.0-0.2,   | 21-Apr-2016 | 22-Apr-2016    | 28-Apr-2016            | 1          | 22-Apr-2016   | 01-Jun-2016      | ✓          |
| A006.5_0.0-0.2                                          |                 |             |                |                        |            |               |                  |            |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                         |            |    |         | Evaluation | n: × = Quality Co | ontrol frequency | not within specification $\Box \checkmark$ = Quality Control frequency within specification. |
|--------------------------------------|------------|----|---------|------------|-------------------|------------------|----------------------------------------------------------------------------------------------|
| Quality Control Sample Type          |            | Co | ount    |            | Rate (%)          |                  | Quality Control Specification                                                                |
| Analytical Methods                   | Method     | 00 | Reaular | Actual     | Expected          | Evaluation       |                                                                                              |
| Method Blanks (MB)                   |            |    |         |            |                   |                  |                                                                                              |
| TCLP for Non & Semivolatile Analytes | EN33a      | 1  | 11      | 9.09       | 9.09              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Matrix: WATER                        |            |    |         | Evaluation | n: × = Quality Co | ontrol frequency | not within specification $\Box \checkmark$ = Quality Control frequency within specification. |
| Quality Control Sample Type          |            | Co | ount    |            | Rate (%)          |                  | Quality Control Specification                                                                |
| Analytical Methods                   | Method     | OC | Reaular | Actual     | Expected          | Evaluation       |                                                                                              |
| Laboratory Duplicates (DUP)          |            |    |         |            |                   |                  |                                                                                              |
| Leachable Mercury by FIMS            | EG035C     | 1  | 8       | 12.50      | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Leachable Metals by ICPAES           | EG005C     | 2  | 12      | 16.67      | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| PAH/Phenols (GC/MS - SIM)            | EP075(SIM) | 0  | 8       | 0.00       | 10.00             | ×                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Laboratory Control Samples (LCS)     |            |    |         |            |                   |                  |                                                                                              |
| Leachable Mercury by FIMS            | EG035C     | 1  | 8       | 12.50      | 5.00              | 1                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Leachable Metals by ICPAES           | EG005C     | 1  | 12      | 8.33       | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| PAH/Phenols (GC/MS - SIM)            | EP075(SIM) | 1  | 8       | 12.50      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Method Blanks (MB)                   |            |    |         |            |                   |                  |                                                                                              |
| Leachable Mercury by FIMS            | EG035C     | 1  | 8       | 12.50      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Leachable Metals by ICPAES           | EG005C     | 1  | 12      | 8.33       | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| PAH/Phenols (GC/MS - SIM)            | EP075(SIM) | 1  | 8       | 12.50      | 5.00              | 1                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Matrix Spikes (MS)                   |            |    |         |            |                   |                  |                                                                                              |
| Leachable Mercury by FIMS            | EG035C     | 1  | 8       | 12.50      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| Leachable Metals by ICPAES           | EG005C     | 1  | 12      | 8.33       | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                               |
| PAH/Phenols (GC/MS - SIM)            | EP075(SIM) | 0  | 8       | 0.00       | 5.00              | ×                | NEPM 2013 B3 & ALS QC Standard                                                               |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                         | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Leachable Metals by ICPAES                                 | EG005C     | SOIL   | In house: referenced to APHA 3120 USEPA SW 846 - 6010: The ICPAES technique ionises leachate sample<br>atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for<br>quantification. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                         |
| Leachable Mercury by FIMS                                  | EG035C     | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise<br>any organic mercury compounds in the TCLP solution. The ionic mercury is reduced online to atomic mercury<br>vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance<br>against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| PAH/Phenols (GC/MS - SIM)                                  | EP075(SIM) | SOIL   | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                  |
| Preparation Methods                                        | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Digestion for Total Recoverable Metals<br>in TCLP Leachate | EN25C      | SOIL   | In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                       |
| TCLP for Non & Semivolatile Analytes                       | EN33a      | SOIL   | In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.                                                                                                                                                                                                                                                                                     |
| Separatory Funnel Extraction of Liquids                    | ORG14      | SOIL   | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.                                                                                                                                            |

|                                                                 |                                         |                                                         |                    |          |          |                                              |        |              |       |                                                           |                           | 4       | 47       | SS           | 5   |             |                                       |                                                      |                         |                        |           | A:     | <b>.</b>     | 0     | M              |        |       | E   |
|-----------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------|----------|----------|----------------------------------------------|--------|--------------|-------|-----------------------------------------------------------|---------------------------|---------|----------|--------------|-----|-------------|---------------------------------------|------------------------------------------------------|-------------------------|------------------------|-----------|--------|--------------|-------|----------------|--------|-------|-----|
| Chain of Cust                                                   | ody                                     | -                                                       |                    |          |          |                                              |        |              |       |                                                           |                           |         |          | _            | _   |             | _                                     | _                                                    | _                       | _                      | -         | _      | -            |       | -              |        | -     |     |
| AECOM - Sydney<br>evel 21, 420 George Stree<br>Sydney, NSW 2000 | f.                                      | Tei: (02) 8934 00<br>Fax: (02) 8934 0<br>E-mail: Stephe | 00<br>001<br>n.Ran | dall@a   | aecom.   | com                                          |        |              | - L   | Laborato<br>Lab. Name: A<br>Lab. Address:<br>Contact Name | iry C<br>ALS<br>::<br>ie: | )eta    | uils     |              |     |             | 1                                     | Tel:<br><sup>≃</sup> ax:<br>Prelin<br>Final<br>Lab C | hinary<br>Repo<br>Quote | y Rep<br>ort by<br>No: | ort b     | y:     |              |       |                |        |       |     |
|                                                                 |                                         | ACONI Desired                                           | Max CO.            | 00004    | 14.0     |                                              | _      |              |       | Project Name                                              | e: Cal                    | tex K   | urnell   | _            |     |             | _                                     | -                                                    | P                       | O No                   |           | -      |              |       | _              |        |       |     |
| Sampled By: Kate Pigram                                         |                                         | AECOM Project                                           | NO: 604            | 188004/  | 1.2      |                                              | _      |              | -     | Flojectivanie                                             |                           |         |          | _            | _   |             | Ana                                   | lysis                                                | Re                      | que                    | st        |        |              |       |                |        |       |     |
| Specifications:                                                 |                                         |                                                         |                    |          |          |                                              |        |              |       | Yes (tick)                                                | Π                         | Т       |          | Π            | Т   | Γ           |                                       | Τ                                                    | Т                       | Т                      |           |        |              | (     | Othe           | r<br>T |       |     |
| 1. Urgent TAT required? (please                                 | se circle: 24hr 48hrd                   | ays)                                                    |                    |          |          |                                              | _      | a            | _     |                                                           | <u>S</u>                  |         |          |              |     |             |                                       | 1                                                    | 1                       | 1                      |           | 1.1    |              | 8     |                |        | - 1   |     |
| 2. Fast TAT Guarantee Requir                                    | ed?                                     | tione?                                                  | =                  |          | -        |                                              | _      |              |       |                                                           | ese                       |         |          |              |     | Env         | iror                                  | me                                                   | ntal                    | l Di                   | visio     | on     |              |       |                |        |       |     |
| 3. Is any sediment layer presen                                 | nt in waters to be excluded from extrac | er NEPM 5 1.1?                                          | -                  |          | -        |                                              |        |              |       |                                                           | ,<br>ě                    |         |          |              |     |             |                                       | Syd                                                  | ney                     | /                      |           |        |              |       |                |        | 1     |     |
| <ol> <li>Special storage requirement</li> </ol>                 | ts? (details:                           |                                                         |                    |          | i        | -                                            |        |              |       |                                                           | l e                       | (a)     | Ê        |              |     | V           | Vork                                  | Ord                                                  | er Ri                   | efere                  |           | 0      |              |       |                |        |       |     |
| 6. Shell Quality Partnership:                                   |                                         |                                                         |                    |          |          |                                              |        |              | -     |                                                           | - A                       | 2<br>Z  | 2        |              |     | _ <b>t</b>  |                                       | 51                                                   | 00                      | 101                    | Jg        | 3      |              |       |                |        |       |     |
| 7. Report Format: Fax                                           | Hardcopy Email                          |                                                         |                    |          | _        | _                                            |        |              |       |                                                           | 20                        | Ш       | ۳        |              |     |             |                                       |                                                      |                         |                        | _         |        |              |       |                | - 1    |       |     |
| Lab.                                                            |                                         | Sampling                                                |                    | Matrix   |          |                                              | Preser | vation       |       | Container                                                 | esto                      | Ē       | als      |              |     |             |                                       |                                                      |                         |                        |           |        |              |       |                |        |       |     |
| ID                                                              | Sample ID                               | Date                                                    | soil               | water    | other    | fitt'ed                                      | acid   | ice          | other | (No. & type)                                              | Asb                       | IR<br>I | Met      |              |     |             |                                       | Щ.                                                   | 1.6                     |                        | <u>, </u> | 144    |              |       |                |        |       |     |
| 1                                                               | R001 0 0 0 2                            | 14/03/2016                                              | x                  |          |          |                                              |        | X            |       | 1 x 125 mL jar; 1<br>x 500 mL bag                         | 1 X                       | x       | x        |              |     |             |                                       | þÇ.                                                  | Û Ş                     |                        | Į.        |        |              | _     |                |        |       |     |
| 2                                                               | B001_0.0-0.2                            | 14/03/2016                                              | X                  |          |          |                                              |        | X            |       | 1 x 125 mL jar; 1<br>x 500 mL bag                         | <sup>1</sup> X            | x       | x        |              |     | مام         | n n n n n n n n n n n n n n n n n n n | ■1 ₩<br>∴ + 6'                                       | 1 <b>11 F</b>           | 84 85                  | 55        |        |              | _     |                |        |       |     |
|                                                                 | B003.5_0.0-0.2                          | 14/03/2016                                              | X                  |          |          |                                              |        | X            |       | 1 x 125 mL jar, 1<br>x 500 mL bag                         | 1 x                       | x       | x        |              |     | 1010        | priorio                               |                                                      |                         |                        | 72        | 2      |              | _     |                |        |       |     |
|                                                                 | B007.5_0.0-0.2                          | 44/00/2010                                              |                    |          |          |                                              |        | Y            |       | 1 x 125 mL jar; 1<br>x 500 mL bag                         | 1 X                       | X       | x        |              |     |             |                                       | Π                                                    |                         |                        | Τ         |        |              |       |                |        |       |     |
|                                                                 | B009.5_0.0-0.2                          | 14/03/2010                                              |                    |          | <u> </u> | ┝─┤                                          |        | $\widehat{}$ |       | 1 x 125 mL jar; 1                                         | 1                         | v       |          | $\top$       |     |             | n n                                   | ΕF                                                   | 100                     | 1916                   | i La      | ŧЬ /   | Sp           | lit   | wc             | Ne     | isca. | te: |
| <u>}</u>                                                        | B010.5_0.0-0.2                          | 14/03/2016                                              | X                  |          | ┨───     |                                              |        |              |       | 1 x 125 mL jar; 1                                         | 1                         | Ê       | <u> </u> | +-           |     |             | - Ai                                  | <u>a</u> 1-                                          | sis                     | : [                    | 20 1      | 00     | 45           | 6     | <u>C</u>       | 57_    | 20    | 55, |
| 6                                                               | B012.5_0.0-0.2                          | 14/03/2016                                              | <u>x</u>           | <b> </b> | <b> </b> | <u>                                     </u> |        | X            |       | x 500 mL bag                                              |                           | X       | X        | +-           |     | rja         | 3.15                                  |                                                      | сy                      | ₽                      | ate       |        | F            | 2-    | L.             |        |       |     |
| 7                                                               | B036_0.0-0.2                            | 15/03/2016                                              | Х                  |          |          |                                              |        | X            |       | x 500 mL bag                                              | X                         | X       | X        | +-           |     | -li-        | ÷                                     |                                                      |                         | 2.4                    | ≁₽        | ate    | +            | +-    |                |        |       |     |
| 8                                                               | B036_0.5-0.6                            | 15/03/2016                                              | х                  |          |          |                                              |        | X            |       | 1 x 125 mL jar,<br>x 500 mL bag                           | <u> </u> x                | X       | X        | $\downarrow$ |     | <u>əh</u> r | 143                                   |                                                      | <u>lou</u>              | rie                    | <u>-</u>  | ╋      | ╞            | ┝╼    | ┣              |        |       |     |
| 9                                                               | B035_0.0-0.2                            | 15/03/2016                                              | х                  |          |          |                                              |        | X            |       | 1 x 125 mL jar;<br>x 500 mL bag                           | 1 x                       | X       | X        |              |     | · () :      | NO:                                   |                                                      | <u>_</u> {              | 5                      | 60        | AC.    | 3            |       |                |        |       |     |
| 10                                                              | B035 0.5-0.6                            | 15/03/2016                                              | X                  |          |          |                                              |        | Х            |       | 1 x 125 mL jar;<br>x 500 mL bag                           | 1 X                       | x       | X        | $\perp$      | L Ì |             | C LI                                  |                                                      | 20                      | 4                      | 19-13     | 1 2    |              | 100   | ۱ <u>۱</u><br> |        |       |     |
| 1                                                               | B034 0.0-0.2                            | 15/03/2016                                              | X                  |          |          |                                              |        | х            |       | 1 x 125 mL jar;<br>x 500 mL bag                           |                           | х       | X        |              |     |             |                                       | -                                                    |                         |                        | _         |        | $\downarrow$ |       | $\vdash$       |        | L     |     |
| 12                                                              | 8034 0.5-0.6                            | 15/03/2016                                              | х                  |          |          |                                              |        | Х            |       | 1 x 125 mL jar;<br>x 500 mL bag                           | :1<br>9 X                 | x       | X        |              |     | ļ           |                                       |                                                      |                         |                        |           | 1 1.4  |              | Febru | 10             |        |       |     |
| * Metats Required (Detete elements not                          | As Cd Cr Cu Ni Pb Zn Hg                 |                                                         | Comm               | ents:    |          |                                              | 24     |              |       |                                                           |                           | _       |          |              |     |             |                                       |                                                      |                         |                        | na svebo  | at NO. |              | L my  |                |        |       | 0   |
| Relinquished by:                                                | Kate Pioram                             | Signed:                                                 | Kate               | Pigra    | m        |                                              | Date:  | 17/03        | 2016  | Relinquishe                                               | ed by:                    |         |          |              |     | S           | igned                                 | h                                                    | -                       |                        |           |        |              | Da    | te:            |        | 215   |     |
| Recieved by                                                     | Frank                                   | Signed:                                                 | -                  |          | >        |                                              | Date:  | (7-3-        | 16    | Recieved b                                                | y: 🖯                      | ikn     | WG!      | CH           | mgt | - S         | igneo                                 | $\Delta^{\mu}$                                       | d.                      |                        | _         | _      | _            | Da    | .e. /          | Qu     | 20    |     |

Printed copies of this document are uncontrolled Page 1 of 1

. .

10

| Chain of Cur                                      | tody                                      |                  |        |          |       |         |          |        |          |                                 |            |      |       |         |                          |               |         |           |               |        | 4                |         | 50/     | M                |         |
|---------------------------------------------------|-------------------------------------------|------------------|--------|----------|-------|---------|----------|--------|----------|---------------------------------|------------|------|-------|---------|--------------------------|---------------|---------|-----------|---------------|--------|------------------|---------|---------|------------------|---------|
|                                                   | stody                                     |                  |        |          |       | _       |          |        | <b>T</b> | Laborato                        | rv         | Det  | ails  | -       | -                        |               |         | Tel:      |               |        | -                | -       |         |                  | -       |
| AECUM - Sydney                                    | pot                                       | Tel: (02) 8934 0 | 000    |          |       |         |          |        | - il-    | Lab. Name: /                    | ALS        |      |       |         |                          |               |         | Fax:      |               |        |                  |         |         |                  |         |
| Level 21, 420 George Sti                          | 661,                                      | Fax: (02) 8934 ( | 0001   |          |       |         |          |        |          | Lab. Address                    | 5:         |      |       |         |                          |               |         | Prelin    | ninary        | / Repo | rt by:           |         |         |                  |         |
| Sydney, NSW 2000                                  |                                           | E-mail: Steph    | en.Rar | ndall@:  | aecom | .com    |          |        |          | Contact Nam                     | e:         |      |       |         |                          |               |         | Final     | Repo          | rt by: |                  |         |         |                  |         |
|                                                   |                                           |                  |        |          |       |         |          |        |          | Lab. Ref:                       |            |      |       |         |                          |               |         | Lab (     | Quote         | No:    |                  |         |         |                  | 1       |
| Sampled By: Kate Pigran                           | n                                         | AECOM Project    | No: 60 | 488804   | /1.2  |         |          |        | -        | Project Name                    | e: Ca      | ltex | Kurne | 11      |                          |               | _       |           | P             | O No.  |                  |         |         |                  |         |
| Specifications:                                   |                                           |                  |        |          |       |         |          |        |          | Yes (tick)                      |            |      |       |         |                          | T             | Ana     | lysis     | Ret           | luest  | -                | Т       |         | Other            |         |
| 1. Urgent TAT required? (pla                      | ease circle: 24hr 48hrd                   | ays)             | -      |          |       |         |          | _      |          |                                 | Ŕ          |      |       |         |                          |               |         |           |               |        |                  |         |         |                  |         |
| 2. Fast TAT Guarantee Req                         | uired?                                    |                  |        |          |       |         |          |        |          |                                 | Ĭ          |      |       |         |                          |               |         |           |               |        |                  |         |         |                  |         |
| 3. Is any sediment layer pres                     | sent in waters to be excluded from extrac | tions?           | -12    | - 24     |       |         |          |        | _        |                                 | pres       |      |       |         |                          |               |         |           |               |        |                  |         |         |                  |         |
| 4. % extraneous material ren                      | moved from samples to be reported as po   | er NEPM 5.1.1?   | _      |          |       |         |          |        |          |                                 | - <u>Š</u> | e l  | ଳ     |         |                          |               |         |           | 1             |        |                  |         |         |                  |         |
| 5. Special storage requireme                      | ents? (details:                           |                  |        | <u> </u> | 1     |         |          | -      | _        |                                 | Ser 1      | B(a  | M     |         |                          |               |         |           |               |        |                  |         |         |                  |         |
| 7 Report Format Fai                               | Hardcody Email                            |                  |        |          | _     | - 22    | 10.0     |        |          |                                 | [₹         | X    | Ē     |         |                          |               |         |           |               |        |                  |         |         |                  |         |
| Lab.                                              |                                           | Sampling         |        | Matrix   |       |         | Preser   | vation |          | Container                       | stos       | ET E | N) si |         |                          |               |         |           |               |        |                  |         |         |                  |         |
| ID                                                | Sample ID                                 | Date             | soil   | water    | other | filt'ed | acid     | ice    | other    | (No. & type)                    | Asbe       | TRH  | Meta  |         |                          |               |         |           |               |        | Ц                |         |         |                  | $\perp$ |
| 13                                                | B033_0.0-0.2                              | 15/03/2016       | х      |          |       |         |          | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag | 1 ×        | x    | X     |         | $\square$                | $\downarrow$  |         |           |               |        | $\vdash$         | +       |         |                  |         |
| 17                                                | B033_0.5-0.6                              | 15/03/2016       | X      | <u> </u> |       |         | L        | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag | X          | X    | ×     |         | $ \downarrow \downarrow$ | +             | +       |           | -             | +      |                  |         |         |                  |         |
| 15                                                | B032_0.0-0.2                              | 15/03/2016       | х      |          | ļ     | ļ       |          | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag | <u> </u> × | x    | X     |         | $\left  \right $         |               | +       | $\square$ |               | _      | $\vdash$         | _       |         | ┝ ┝              |         |
| 16                                                | B032_0.5-0.6                              | 15/03/2016       | х      |          |       |         |          | X      |          | 1 x 125 mL jar;<br>x 500 mL bag | <u> x</u>  | X    | X     | $\perp$ |                          | $\rightarrow$ | +       |           | $\rightarrow$ | _      | $\square$        |         |         |                  | +       |
| (7                                                | B031_0.0-0.2                              | 15/03/2016       | X      |          |       |         |          | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag | <u> </u> × | X    | X     |         | $\downarrow$             | _             | _       | $\square$ |               |        | $\vdash$         | $\perp$ | +       | $\left  \right $ |         |
| 13                                                | B031_0.5-0.6                              | 15/03/2016       | X      |          |       |         |          | X      |          | 1 x 125 mL jar;<br>x 500 mL bag | <u> </u> × | X    | X     |         |                          |               | _       |           |               |        |                  |         |         | $\left  \right $ |         |
| 19                                                | B016.5_0.0-0.2                            | 15/03/2016       | X      |          |       |         |          | X      |          | 1 x 125 mL jar,<br>x 500 mL bag | ×          | X    | X     |         |                          | $\square$     |         | $\square$ |               | +      | Ļļ               | +       | -       | $\left  \right $ |         |
| 10                                                | B016.5_0.4-0.5                            | 15/03/2016       | X      |          |       |         |          | X      |          | 1 x 125 mL jar;<br>x 500 mL bag | <u> </u> × | X    | X     |         |                          |               | $\perp$ |           |               |        | $\square$        |         | -       |                  |         |
| 21                                                | B016_0.0-0.2                              | 15/03/2016       | X      |          |       |         | <u> </u> | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag | X          | X    | X     |         | $\left  \right $         |               |         |           |               |        | -                | _       |         | $\left  \right $ | _       |
| LL                                                | B015.5_0.5-0.6                            | 15/03/2016       | X      |          |       |         | L        | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag | <u> </u> x | X    | X     |         |                          | $\square$     |         |           |               | _      | ┞╌┥              | +       |         | $\left  \right $ | _+_     |
| 23                                                | B014_0.0-0.2                              | 15/03/2016       | X      |          |       |         |          | х      |          | 1 x 125 mL jar;<br>x 500 mL bag | <u> </u> x | ×    | X     |         |                          | $\square$     | +       | $\square$ |               |        | ╞╌╿              |         | _       |                  |         |
| 24                                                | B014_0.5-0.6                              | 15/03/2016       | Х      |          |       |         |          | X      |          | x 500 mL bag                    | ×          | X    | X     |         |                          |               |         |           |               | Link.  | Report Ma        |         | 14" "91 |                  |         |
| Metais Required (Delete elements no<br>required): | * As Cd Cr Cu Ni Pb Zn Hg                 |                  | Comn   | nents:   |       |         |          |        |          |                                 |            |      |       |         |                          |               |         |           |               | Leb    | - capron ti a 46 |         |         | -                |         |
| Relinquished by:                                  | Kate Pigram                               | Signed:          | Kate   | Pigra    | m     |         | Date:    | 17/03/ | 2016     | Relinquishe                     | ed by      |      |       |         |                          | 5             | Signed  | :         |               |        | _                |         | Dat     | e:               |         |
| Recieved by:                                      | Fronk                                     | Signed:          |        | $\sim$   |       |         | Date:    | 17.    | 3-16     | Recieved b                      | y:         |      |       |         |                          | 5             | Signed  |           |               |        | -                |         | Dat     | e:               |         |

Printed copies of this document are uncontrolled Page 1 of 1

.

-

|                                                    |                                           |                  |          |         |       |        |        |        |          |                                   |                |       |          |           |               |              |              |              |          |              |          |           | ļ             |              | CC      | M       | I                       |
|----------------------------------------------------|-------------------------------------------|------------------|----------|---------|-------|--------|--------|--------|----------|-----------------------------------|----------------|-------|----------|-----------|---------------|--------------|--------------|--------------|----------|--------------|----------|-----------|---------------|--------------|---------|---------|-------------------------|
| Chain of Cus                                       | tody                                      |                  |          |         |       |        |        |        |          |                                   |                |       |          | _         |               | _            |              |              |          |              |          | _         |               |              |         |         |                         |
| AECOM - Sydney                                     |                                           |                  |          |         | 12.12 |        |        |        | •        | Laborato                          | iry            | Det   | ails     | 5         |               |              |              |              | Tel:     |              |          |           |               |              |         |         |                         |
| Level 21, 420 George Stre                          | et,                                       | Tel: (02) 8934 0 | 000      |         |       |        |        |        |          | Lab. Name: A                      | ALS.           |       |          |           |               |              |              |              | Fax      | :            |          |           |               |              |         |         |                         |
|                                                    |                                           | Fax: (02) 8934 ( | 0001     |         |       |        |        |        |          | Lab. Address                      | S:             |       |          |           |               |              |              |              | Prel     | limina       | ary R    | epor      | t by:         |              |         |         |                         |
| Sydney, NSW 2000                                   |                                           | E-mail: Steph    | en.Rar   | ndall@a | aecom | .com   |        |        |          | Contact Nam                       | e:             |       |          |           |               |              |              |              | Fina     | al Re        | port     | by:       |               |              |         |         |                         |
|                                                    |                                           |                  |          |         |       |        |        |        |          | Lab. Ref:                         |                |       |          |           |               |              |              |              | Lab      | Quo          | te N     | 0:        |               |              |         |         |                         |
| Sampled By: Kate Pigran                            | 1                                         | AECOM Project    | No: 60   | 488804  | /1.2  |        |        |        | 0.00     | Project Name                      | e: Ca          | itex  | Kurn     | ell       |               | _            | _            |              |          | _            | POI      | No.       |               | _            |         |         |                         |
| Specifications:                                    |                                           |                  |          |         |       |        |        |        |          | Yes (tick)                        |                |       |          |           | Т             | Т            | Т            | Ana<br>T     | alysi    | s R          | equ      | est       | Т             | Т            | _       | Oth     | er                      |
| 1. Urgent TAT required? (ple                       | ase circle: 24hr 48hrda                   | iys)             | -        |         |       |        |        |        |          |                                   | ŵ              |       |          |           |               |              |              |              | 1        |              |          | 1         |               | F            | Т       | Τ       |                         |
| 2. Fast TAT Guarantee Requ                         | iired?                                    |                  |          | 100     |       |        |        |        |          |                                   | Ĭ              |       |          |           |               |              |              |              |          |              |          |           |               |              |         |         |                         |
| 3. Is any sediment layer pres                      | ent in waters to be excluded from extract | ions?            | _        |         |       |        |        | - 10 A |          |                                   | Į ž            |       |          |           |               |              |              |              |          |              |          |           |               |              |         |         |                         |
| 4. % extraneous material ren                       | noved from samples to be reported as pe   | r NEPM 5.1.1?    |          |         |       | _      | -      |        |          |                                   | 8              | ام ا  | <u>_</u> |           |               |              |              |              |          |              |          |           |               |              |         |         |                         |
| 5. Special storage requireme                       | nts? (details:                            |                  |          |         | )     |        |        |        |          |                                   | Sel 1          | B(a   | N 10     |           |               |              |              |              | 1        |              |          | 1         |               |              |         |         |                         |
| Snell Quality Pannership:     A Report Format: Fax | Hardcool Email :                          |                  | -        |         |       |        | 1      |        | -        |                                   | ₹              | X     |          |           |               |              |              |              |          |              |          |           |               |              |         |         | 11                      |
| Lab                                                | Hardcoby Errait,                          | Sampling         |          | Matrix  |       |        | Preser | vation |          | Container                         | ő              | E E   | اع ا     |           |               |              |              |              |          |              |          |           |               |              |         |         |                         |
| ID                                                 | Sample ID                                 | Date             | soil     | water   | other | filled | acid   | ice    | other    | (No. & type)                      | Asbes          | TRH E | Metals   |           |               |              |              |              |          |              |          |           |               |              |         |         |                         |
| 25                                                 | A003.5_0.0-0.2                            | 16/03/2016       | х        |         |       |        |        | х      |          | 1 x 125 mL jar, 1<br>x 500 mL bag | x              | x     | x        |           | $\Box$        | T            |              |              |          |              |          |           |               | $\top$       | $\bot$  | $\Box$  |                         |
| 26                                                 | A005.5_0.0-0.2                            | 16/03/2016       | X        |         |       |        |        | Х      |          | 1 x 125 mL jar; 1<br>x 500 mL bag | X              | х     | х        | $\square$ |               | $\perp$      | $\downarrow$ |              |          |              |          |           |               | $\perp$      | $\perp$ | $\perp$ | $\vdash$                |
| 27                                                 | A006.5_0.0-0.2                            | 16/03/2016       | х        |         |       |        |        | Х      |          | 1 x 125 mL jar; 1<br>x 500 mL bag | X              | х     | x        |           |               |              |              |              |          |              |          |           |               |              | $\perp$ |         | $\square$               |
| 28                                                 | A007.5_0.0-0.2                            | 16/03/2016       | X        |         |       |        |        | X      |          | 1 x 125 mL jar; 1<br>x 500 mL bag | x              | X     | x        |           | $\perp$       |              |              |              |          |              |          |           | _             |              | $\perp$ |         | $\square$               |
| 29                                                 | A008.5_0.0-0.2                            | 16/03/2016       | X        |         |       |        |        | Х      | <u> </u> | 1 x 125 mL jar, 1<br>x 500 mL bag | ' x            | x     | x        |           |               |              |              | -            | ┢        | ļ            |          |           | $\downarrow$  |              |         | $\perp$ | $\downarrow \downarrow$ |
| 30                                                 | A009.5_0.0-0.2                            | 16/03/2016       | X        |         |       |        |        | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag   | X              | X     | х        |           | ╞             | _            |              | $\downarrow$ | ╞        | ┡            |          | Ц         | _             | $\downarrow$ | $\perp$ |         | $\square$               |
| 31                                                 | A013.5_0.0-0.2                            | 16/03/2016       | X        |         |       | L      |        | Х      |          | 1 x 125 mL jar;<br>x 500 ml, bag  | X              | X     | X        |           | $\rightarrow$ | 4            | $\downarrow$ | $\downarrow$ | <u> </u> | $\downarrow$ |          |           | $\downarrow$  | +            | ╞       | +       | $\vdash$                |
| 32                                                 | A013.5_0.4-0.5                            | 16/03/2016       | Х        |         |       |        |        | X      |          | 1 x 125 mL jar;<br>x 500 mL bag   | ×              | X     | x        |           | $\perp$       |              |              | $\perp$      |          |              |          |           |               |              | $\perp$ |         | $\vdash$                |
| 33                                                 | A014.5_0.4-0.5                            | 16/03/2016       | X        |         |       |        |        | x      |          | 1 x 125 mL jar;<br>x 500 mL bag   | <u>'  x</u>    | x     | X        |           |               | $\bot$       |              |              | 1        | _            |          |           | $\downarrow$  | $\downarrow$ | $\perp$ |         | $\downarrow$            |
| 3kg                                                | C011_0.0-0.2                              | 16/03/2016       | Х        |         |       |        |        | х      |          | 1 x 125 mL jar,<br>x 500 mL bag   | <sup>1</sup> × | X     | x        |           | _             | $\downarrow$ |              |              |          | -            | <u> </u> |           | $\rightarrow$ | $\downarrow$ |         |         | $\downarrow \downarrow$ |
| 3(                                                 | C012_0.0-0.2                              | 16/03/2016       | <u>x</u> |         |       |        |        | Х      |          | 1 x 125 mL jar;<br>x 500 mL bag   | <u>'  x</u>    | X     | X        |           | $\downarrow$  | $\downarrow$ | _            |              | 1        |              |          | $\square$ |               |              | _       | $\perp$ | $\downarrow$            |
| 36                                                 | QC150                                     | 14/03/2016       | х        |         |       |        |        | Х      |          | 1 x 125 mL jar                    |                | х     | х        |           |               |              |              |              |          |              |          |           | more bin      |              |         | w 10    |                         |
| * Metals Required (Detete elements no<br>sourced)  | As Cd Cr Cu Ni Pb Zn Hg                   |                  | Comm     | nents:  |       |        |        |        |          |                                   |                |       |          |           |               |              |              |              |          |              |          | C.80 PQ   | ehour Mo      |              | C, 304  | .,      |                         |
| Relinquished by:                                   | Kate Pigram                               | Signed:          | Kate     | Pigra   | m     |        | Date:  | 17/03/ | 2016     | Relinquishe                       | d by:          |       |          | -         |               |              | Si           | gnec         | 1:       |              | _        |           |               |              | D       | ate:    |                         |
| Recieved by:                                       | Frank                                     | Signed:          |          |         |       |        | Date:  | 17-3   | -16      | Recieved by                       | <i>r</i> :     | _     |          |           |               |              | S            | gnec         | 1:       |              |          |           |               |              | D       | ate:    |                         |
|                                                    |                                           |                  |          |         |       |        |        | 150    | 00       |                                   |                |       |          |           |               |              |              |              |          |              |          |           |               |              |         |         |                         |

1

 $(\mathbf{a})$
| AECOM Sudawi                                      |                                          |                   |        |         | -     | _        |       |        | T     | Laborato                                       | 'y D       | eta   | ils      | Tel:                   |                  |    |       |              |         |       |              |          |              |       |              |
|---------------------------------------------------|------------------------------------------|-------------------|--------|---------|-------|----------|-------|--------|-------|------------------------------------------------|------------|-------|----------|------------------------|------------------|----|-------|--------------|---------|-------|--------------|----------|--------------|-------|--------------|
| AECOM - Sydney                                    | at                                       | Tel: (02) 8934 00 | 001    |         |       |          |       |        | 1.1   | Lab. Name: A                                   | S          |       |          |                        |                  |    |       | Fax          | k:      |       |              |          |              |       |              |
| Leve: 21, 420 George Stre                         | σι                                       | Fax: (02) 8934 0  | 001    |         |       |          |       |        |       | Lab. Address:                                  | -          |       |          | Preliminary Report by: |                  |    |       |              |         |       |              |          |              |       |              |
| Sydney, NSW 2000                                  |                                          | E-mail: Stephe    | en.Ran | idall@a | aecom | .com     |       |        |       | Contact Name                                   | 1          |       |          |                        | Final Report by: |    |       |              |         |       |              |          |              |       |              |
|                                                   |                                          |                   |        | Ŭ       |       |          |       |        |       | Lab. Ref:                                      |            |       |          |                        | Lab Quote No:    |    |       |              |         |       |              |          |              |       |              |
| Sampled By: Kate Pigram                           |                                          | AECOM Project     | No: 60 | 488804  | 1.2   |          |       |        | _     | Project Name                                   | Calt       | ex Ku | Inell    | -                      | _                | _  |       |              |         | PO    | ) No.        |          |              |       | _            |
| Specifications:                                   |                                          |                   |        |         |       |          |       |        |       | Yes (tick)                                     | T          |       | Т        |                        | -                | T  | Ana   | alys         | sis F   | Req   | ues          | t<br>T   |              |       | -            |
| 1 Liment TAT required? (plea                      | ase circle: 24 r 48hr (                  | lavsi             |        |         |       |          |       | -      |       |                                                | 6          |       |          | 11                     |                  |    |       |              |         |       |              |          |              |       | Γ            |
| 2. Fast TAT Guarantee Requi                       | ired?                                    |                   |        | _       |       |          | e     |        |       |                                                | en la      |       |          |                        |                  |    |       |              | Í.      |       |              |          |              |       |              |
| 3. Is any sediment layer press                    | ent in waters to be excluded from extrac | tion 17           |        |         |       | 1        |       |        |       |                                                | Sel        |       | z        |                        |                  |    |       |              |         |       |              |          |              |       |              |
| 4. % extraneous material rem                      | oved from samples to be reported as p    | er NEPM 5.1.17    | ÷.,    |         | -     |          |       |        |       |                                                | ١ <u>ۆ</u> | 1/-   | ٦Ľ       |                        |                  |    |       |              |         |       |              |          |              |       |              |
| 5. Special storage requirement                    | nts? (details                            |                   |        |         | K     |          | _     | _      |       |                                                | en c       | 3 (a) | 2 0      |                        |                  |    |       |              |         |       |              |          |              |       |              |
| 6. Shell Quality Partnership:                     |                                          |                   |        |         | _     |          |       | _      | _     |                                                | Abs<br>I   |       | Ē ļ ŝ    |                        |                  | 1  |       |              |         |       |              |          |              |       |              |
| 7. Report Format Fax                              | Hardcopy Email                           |                   | 100    |         |       | -        | Deer  |        | _     | Cantainer                                      | ) (j       | Ĭ     | ۶        |                        |                  |    |       |              | 1       |       |              |          |              |       |              |
| Lab.                                              | Darrela ID                               | Sampling          |        | Matrix  |       | <b> </b> | Prese | vation |       | Container                                      | estc       | E S   | ူဂ္ဂ     |                        |                  |    |       |              |         |       |              |          |              |       |              |
| ID                                                | Sample ID                                | Date              | soil   | water   | other | filfed   | acid  | ice    | other | (No. & type)                                   | Asb        |       | TRF      |                        |                  |    |       |              |         |       | $\perp$      | 1        |              |       | L            |
| 37                                                | QC153                                    | 14/03/2016        | х      |         |       |          |       | Х      |       | 1 x 125 ml. jar                                |            |       | <u> </u> |                        |                  |    |       |              |         |       |              | L        |              | 1     | L            |
| ¥                                                 | QC151                                    | 15/03/2016        | х      |         |       |          |       | х      |       | 1 x 125 mL jar                                 |            | x     | x        |                        | _                | PI | LEASE | FOR          | WAR     | D SAI | MPLE         | AND (    |              | O EUF | 101<br>T     |
| 23                                                | QC152                                    | 15/03/2016        | х      |         |       |          |       | х      |       | 1 x 125 mL jar                                 |            | ×     | ×        |                        |                  |    |       | ╇            |         |       | +            | ╇        | $\downarrow$ |       | Ļ            |
| 19                                                | QC154                                    | 15/03/2016        | Х      |         |       |          |       | X      |       | 1 x 125 mL jar                                 | $\square$  | ×     | ×        |                        | $\vdash$         |    | _     | $\downarrow$ | 1       | -     | _            | ╄        | $\downarrow$ | -     | Ļ            |
| 40                                                | QC156                                    | 15/03/2016        |        | X       |       |          |       | х      |       | 2 x vials; 1 x 100<br>mL plastic; 1 x<br>amber | Ц          | x     | x        |                        |                  |    |       |              |         |       |              |          |              |       |              |
| -12                                               | QC155                                    | 16/03/2016        | X      |         |       |          |       | X      |       | 1 x 125 mL jar                                 |            | x     | x        |                        |                  | Р  | LEASE | FOR          | WAR     | D SA  | MPLE         | AND      | COC 1        | IO EU | 20           |
|                                                   | QC157                                    | 16/03/2016        | X      |         |       |          |       | х      |       | 1 x 125 ml, jar                                |            | х     | x        |                        |                  |    |       | Γ            |         |       |              |          |              |       |              |
| k.                                                | QC158                                    | 16/03/2016        | х      |         |       |          |       | X      |       | 1 x 125 mL jar                                 |            | x     | x        |                        |                  | P  | LEASE | EFOR         | WAR     | D SA  | MPLE         | AND      | <u>coc</u> 1 | TO EU | RO           |
| 42                                                | QC161                                    | 16/03/2016        |        | x       |       |          |       | x      |       | 2 x vials; 1 x 100<br>mL plastic; 1 x<br>amber |            | x     | x        |                        |                  |    |       |              |         |       |              |          |              |       |              |
| 43                                                | QC162                                    | 16/03/2016        |        | Х       |       |          |       | X      |       | 2 x vials                                      |            |       | )        | (                      |                  |    |       |              | $\perp$ |       | $\downarrow$ | $\perp$  | $\downarrow$ |       | $\downarrow$ |
|                                                   |                                          |                   |        |         |       |          |       |        |       |                                                |            |       |          |                        |                  |    |       |              |         |       |              |          |              |       |              |
|                                                   |                                          |                   |        |         |       |          |       |        |       |                                                |            |       |          |                        |                  |    |       |              |         |       |              |          |              |       |              |
| * Metals Required (Delete elements not required): | As Cd Cr Cu Ni Pb Zn Hg                  |                   | Comm   | nents:  |       |          |       |        |       |                                                |            |       |          |                        |                  |    |       | -            |         | 1     | Lit          | 3 Report | t No.        |       | E            |
| Delinewished by                                   | Kata Dimon                               | Signed:           | Kato   | Piora   | 00    |          | Date: | 17/03/ | 2016  | Relinquished                                   | by:        |       |          |                        |                  | 1  | Signe | d;           | 6       |       |              |          |              |       | D            |

ATCOM

Printed copies of this document are uncontrolled

|                                                |                                           |                   |                   |          |          |         |          |                                              |       |                                       |             |            |        |          |               |            |                        |             |        |        | -                             |          | CC    | )IV        |     | - 1 |       |
|------------------------------------------------|-------------------------------------------|-------------------|-------------------|----------|----------|---------|----------|----------------------------------------------|-------|---------------------------------------|-------------|------------|--------|----------|---------------|------------|------------------------|-------------|--------|--------|-------------------------------|----------|-------|------------|-----|-----|-------|
| Chain of Cust                                  | ody                                       |                   |                   |          | _        |         |          |                                              |       |                                       |             | of-        | la     | _        | -             | _          |                        | fol:        |        |        | _                             | _        | 0.17  | -          |     | _   | Esc   |
| ECOM - Sydney                                  |                                           |                   |                   |          |          |         |          |                                              | - 4   | Laborato                              |             |            |        |          |               |            |                        |             |        | - 1    | -02                           |          |       |            |     |     |       |
| evel 21, 420 George Street                     | t,                                        | Tel: (02) 8934 00 | 000               |          |          |         |          |                                              | L. L. | Lab. Name: A                          |             |            | F      | ax:      |               |            |                        |             |        |        |                               | - 1      | 8     |            |     |     |       |
|                                                |                                           | Fax: (02) 8934 0  | 001               |          |          |         |          |                                              | 1     | Lab. Address:                         | :           |            |        |          |               |            | Preliminary Report by: |             |        |        |                               |          |       | - 1        |     |     |       |
| Sydney, NSW 2000                               |                                           | E-mail: Stephe    | n.Ran             | dall@a   | ecom.    | m00.    |          |                                              | 4     | Contact Name                          | e:          |            |        |          |               |            | 1                      | Final       | Repo   | rt by: |                               |          |       |            |     | - 1 |       |
|                                                |                                           |                   |                   |          |          |         |          |                                              | -     | Lab. Ref:                             |             |            |        |          | Lab Quote No: |            |                        |             |        |        |                               |          | ľ.    |            |     |     |       |
| AECOM Project No: 60488804/1.2                 |                                           |                   |                   |          |          |         |          |                                              |       | Project Name                          | : Calt      | ex Ku      | Irnell | -        | _             | PO No.     |                        |             |        |        |                               |          |       |            |     |     |       |
| Specifications                                 |                                           |                   |                   |          |          | 1.1     |          |                                              |       | Vec (tick)                            |             | -          | -      | _        |               | -          | Anal                   | ysis        | Ret    | ues    | t                             | _        |       | _          |     |     | 1     |
| Specifications.                                |                                           |                   |                   |          |          |         |          |                                              |       | Tes (tiok)                            |             |            |        | Т        |               |            |                        |             |        |        |                               | L        |       | Oth        | her |     |       |
| Lineant TAT required? (nless                   | e circle: 24hr 48hr da                    | avs)              |                   |          |          |         |          |                                              |       |                                       | ()          |            |        |          | 11            |            |                        |             |        |        |                               |          |       |            |     |     | 1     |
| Grat TAT Cuscentes Require                     | ad2                                       |                   | 1                 | _        | _        | _       |          | 1                                            |       |                                       | Ĕ           |            |        |          |               |            |                        | ł           |        |        | 1                             |          | 1     |            |     |     | F     |
| . Fast IA1 Guarantee Require                   | t in waters to be evaluated from extract  | ions?             | -                 | -        |          |         | -        |                                              | 1     |                                       | es l        |            | z      |          |               |            |                        |             | 1      |        |                               |          |       |            |     |     |       |
| . Is any sediment layer presen                 | in in waters to be excluded north extract | NEDM 5 1 12       |                   |          | _        |         |          |                                              |       |                                       | ١ <u>ڦ</u>  |            |        | i I      |               |            |                        |             |        |        |                               |          |       |            |     |     | 1     |
| <ol> <li>% extraneous material remo</li> </ol> | weg from samples to be reported as pe     |                   |                   |          | _        |         |          | _                                            |       |                                       | ğ           | 등          | 5 E    |          |               |            |                        |             |        |        |                               |          |       |            |     |     | 6 - C |
| 5. Special storage requirement                 | s? (détails:                              |                   |                   | /        |          | _       | -        | _                                            | -     |                                       | 8           | š.         | 5 0    |          |               |            |                        |             |        |        |                               |          |       |            |     |     |       |
| 5. Shell Quality Partnership:                  |                                           |                   | -                 | _        |          | _       | -        |                                              | -     |                                       | 2           | S          | 티운     |          |               |            |                        | 1           |        |        |                               |          |       |            |     | 1   |       |
| Report Format: Fax                             | Hardcopy Email :                          |                   | _                 |          |          |         | Dec es : |                                              |       | Container                             | ğ           | <u>ا</u> ن | 퇴였     | <u>}</u> |               |            |                        |             |        |        |                               |          |       |            |     |     | l'    |
| Lab.                                           |                                           | Sampling          | L                 | Matrix   |          |         | Preser   | vation                                       |       | Container                             | 1<br>2<br>2 | 6          | ် ခြ   | 5        |               |            |                        |             |        |        |                               |          |       |            |     |     |       |
| D                                              | Sample ID                                 | Date              | soil              | water    | other    | fitt'ed | acid     | ice                                          | other | (No. & type)                          | Asbe        | TRH        | TRH    |          |               |            |                        |             |        |        |                               |          |       |            |     |     |       |
| 37                                             | QC153                                     | 14/03/2016        | х                 |          |          |         |          | Х                                            |       | 1 x 125 mL jar                        |             |            |        | <        |               |            |                        |             |        |        |                               |          |       |            |     |     |       |
| 24                                             |                                           |                   |                   |          |          |         |          |                                              |       | 4 x 405 =1 ion                        | 11          | ~          | 1      |          |               | DI         |                        | OBW         |        |        |                               |          | FUROR | FINS       |     |     | ſ     |
| <i>K</i>                                       | QC151                                     | 15/03/2016        | <u>    X     </u> |          |          |         |          | <u> </u>                                     |       | 1 X 125 mL jair                       | ┢╾╢         | <u> </u>   | 4      | ┿        | 1             | PL         | EAGE                   | UKHA        | IRD SA |        |                               | 1        |       |            | T   |     |       |
| 28                                             | QC152                                     | 15/03/2016        | X                 |          |          |         |          | X                                            |       | 1 x 125 mL jar                        |             | ×          | ×      | +        | $\downarrow$  | +          | -                      | $ \vdash  $ | -      | +      | +                             | $\dashv$ |       | +          | +   |     |       |
| 39                                             | QC154                                     | 15/03/2016        | X                 |          |          |         |          | Х                                            |       | 1 x 125 mL jar                        |             | x          | ×      |          | $\downarrow$  |            |                        |             | _      |        | ┤┤                            |          |       | +          | +-  |     |       |
|                                                |                                           |                   |                   |          | 1        |         |          |                                              |       | 2 x vials; 1 x 100<br>mL plastic; 1 x |             |            |        |          |               |            |                        |             |        |        |                               |          |       |            |     |     |       |
| 40                                             | OC156                                     | 15/03/2016        |                   | X        |          |         |          | X                                            |       | amber                                 |             | Х          | x      |          |               |            |                        |             |        |        |                               |          |       |            |     |     | 4     |
|                                                | 00155                                     | 16/03/2016        | V                 |          |          |         |          | X                                            |       | 1 x 125 mL jar                        |             | x          | x      |          |               | PL         | EASE I                 | FORW        | ARD SA | MPLE   | AND CO                        | ос то    | EURO  | FINS       |     |     |       |
|                                                | QU 100                                    | 10/03/2010        | <u></u>           |          |          |         |          |                                              | t     |                                       |             |            |        |          |               |            | T                      |             | T      |        |                               |          |       |            |     |     | 1     |
| પ                                              | QC157                                     | 16/03/2016        | X                 |          |          |         |          | X                                            | L     | 1 x 125 mL jar                        |             | X          | ×      |          | ++            |            | 1                      |             |        | -      |                               |          |       |            | _   | ┣─  | 4     |
| k.                                             | 00450                                     | 4.0102/2040       |                   |          |          |         |          | X                                            |       | 1 x 125 mL iar                        |             | x          | x      |          |               | P          | EASE                   | FORW        | ARD S  |        | AND CI                        | осто     | EURO  | FINS       |     |     | 1     |
| e                                              | QC158                                     | 16/03/2016        | <u> </u>          | +-       |          | +       |          | ⊢^                                           | +     | 2 v viale: 1 v 10                     |             | $\square$  |        |          |               | - <u> </u> | T                      |             |        |        |                               |          |       |            |     |     | 1     |
|                                                | 1                                         |                   | 1                 |          |          | 1       |          | 1                                            |       | mL plastic; 1 x                       | 1           |            |        |          |               | 1          |                        | 1           |        | 1      |                               |          |       |            |     |     |       |
| 42                                             | QC161                                     | 16/03/2016        |                   | X        | <u> </u> | L       |          | X                                            |       | amber                                 |             | X          | X      | $\perp$  |               |            |                        | $\vdash$    |        |        | +                             | $\vdash$ |       |            |     |     | 1     |
|                                                |                                           | 40/00/0040        |                   | V        |          |         |          |                                              |       | 2 y viale                             |             |            |        | x        |               |            |                        |             |        | 1      |                               | 11       |       |            |     |     |       |
| <u> </u>                                       | QC162                                     | 16/03/2016        |                   | <u> </u> |          | +       |          | +                                            | +     | 2 A 11010                             | +           | ┟─┤        | -+-    | ~        |               | -          |                        |             |        | +      |                               | $\vdash$ |       | -+         |     |     | 1     |
|                                                |                                           |                   |                   |          |          |         |          |                                              |       |                                       | 1           |            | 1      |          |               |            |                        |             |        |        |                               |          |       |            |     |     | 1     |
|                                                | <b>}</b>                                  | +                 | +                 | +        | +        | +       | <u> </u> | <u>†                                    </u> | 1     | 1                                     |             |            | -      |          |               |            |                        |             |        |        |                               |          |       |            |     |     |       |
|                                                | 1                                         |                   |                   |          |          |         |          |                                              |       |                                       |             |            | 1      |          |               |            |                        |             |        |        | Report 4                      |          |       | The second |     | 1   | 4     |
| * Metals Required (Delete elements not         | As Cd Cr Cu Ni Ph 7n Ha                   |                   | Comr              | nents:   |          |         |          |                                              |       |                                       |             |            |        |          |               |            |                        |             |        |        | <ul> <li>respond t</li> </ul> | -        | ſ     | ang ito    |     |     | 1     |
| inquired):                                     | As OU OF OU NEED ZH HY                    | 0                 | 1                 | 0        |          |         | Deter    | 17/02                                        | 12016 | Relinquiche                           | d by:       | _          | -      | _        |               | s          | ianed                  | :           |        |        |                               |          |       | Date:      |     |     | 1     |
| Relinquished by:                               | Kate Pigram                               | Signed:           | Kate              | Pigra    | m        |         | Date:    | 1103                                         | 2010  | Designed                              | a ay.       | _          |        | _        | -             |            | inned                  |             | _      |        |                               |          | -     | Date:      | _   |     | 1     |
| Recieved by:                                   | Frank                                     | Signed            | 13                |          |          |         | Date:    | (7-3-                                        | 1 6-5 | recieved by                           | y.          |            |        | -        | _             | -          | gnea                   |             | _      | _      |                               | _        | _     |            |     | _   | 18 C  |

Printed copies of this document are uncontrolled Page 1 of 1

12



ABN - 50 005 085 521

 Melbourne
 3-5 Kingston Town Close

 Cakleigh Vic 3166
 Phone : +61 3 8564 5000

 web : www.eurofins.com.au
 NATA # 1261

 Site # 1254 & 14271
 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

## Sample Receipt Advice

| Company name:       | AECOM Aust Pty Ltd Sydney      |
|---------------------|--------------------------------|
| Contact name:       | Stephen Randall                |
| Project name:       | CALTEX KURNELL                 |
| Project ID:         | 60488804/1.2                   |
| COC number:         | Not provided                   |
| Turn around time:   | 5 Day                          |
| Date/Time received: | Mar 18, 2016 2:00 PM<br>493555 |
|                     |                                |

mgt

e.mail : EnviroSales@eurofins.com.au

### Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : .1 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

## **Contact notes**

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Stephen Randall - Stephen.Randall@aecom.com.



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis



38 Years of Environmental Analysis & Experience



ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Nar<br>Address:     | ne: AECOM<br>Level 21<br>Sydney<br>NSW 20 | Aust Pty Ltd Syd<br>, 420 George St<br>00 | ney    |             |      | O<br>Re<br>Pi<br>Fa | rder l<br>eport<br>hone:<br>ax: | No.:<br>: #:<br>: |                                | 493555<br>02 8934 0000<br>02 8934 0001 | Received:<br>Due:<br>Priority:<br>Contact Name: | Mar 18, 2016 2:00 PM<br>Mar 29, 2016<br>5 Day<br>Stephen Randall |
|-----------------------------|-------------------------------------------|-------------------------------------------|--------|-------------|------|---------------------|---------------------------------|-------------------|--------------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------------------------|
| Project Name<br>Project ID: | : CALTEX 6048880                          | KURNELL<br>4/1.2                          |        |             |      |                     |                                 |                   |                                |                                        |                                                 |                                                                  |
|                             |                                           |                                           |        |             |      |                     |                                 |                   |                                |                                        | Eurofins   mg                                   | gt Client Manager: Nibha Vaidya                                  |
|                             |                                           | Sample Detail                             |        |             | BTEX | Benzo[a]pyrene      | NEPM 2013 Metals : Metals M13   | Moisture Set      | Total Recoverable Hydrocarbons |                                        |                                                 |                                                                  |
| Laboratory whe              | ere analysis is co                        | onducted                                  | 074    |             |      |                     |                                 |                   |                                |                                        |                                                 |                                                                  |
| Svdnev Laborat              | torv - NATA Site                          | e # 18217                                 | 2/1    |             | х    | Х                   | х                               | х                 | Х                              |                                        |                                                 |                                                                  |
| Brisbane Labor              | atory - NATA Si                           | te # 20794                                |        |             |      |                     |                                 |                   |                                |                                        |                                                 |                                                                  |
| External Labora             | atory                                     |                                           |        | 1           |      |                     |                                 |                   |                                |                                        |                                                 |                                                                  |
| Sample ID                   | Sample Date                               | Sampling<br>Time                          | Matrix | LAB ID      |      |                     |                                 |                   |                                |                                        |                                                 |                                                                  |
| QC151                       | Mar 15, 2016                              |                                           | Soil   | S16-Ma18366 | Х    | Х                   | Х                               | Х                 | Х                              |                                        |                                                 |                                                                  |
| QC155                       | Mar 16, 2016                              |                                           | Soil   | S16-Ma18367 | Х    | Х                   | Х                               | Х                 | Х                              |                                        |                                                 |                                                                  |
| QC158                       | Mar 16, 2016                              |                                           | Soil   | S16-Ma18368 | Х    | Х                   | Х                               | Х                 | Х                              |                                        |                                                 |                                                                  |



AECOM Aust Pty Ltd Sydney Level 21, 420 George St Sydney NSW 2000



NATA

WORLD RECOGNISED



NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Stephen Randall

| Report        |
|---------------|
| Project name  |
| Project ID    |
| Received Date |

**493555-S** CALTEX KURNELL 60488804/1.2 Mar 18, 2016

| Client Sample ID                                  |      |          | 00151         | 0C155        | 00158        |
|---------------------------------------------------|------|----------|---------------|--------------|--------------|
| Sample Matrix                                     |      |          | Soil          | Soil         | Soil         |
| Eurofins I mat Sample No                          |      |          | S16-Ma18366   | S16-Ma18367  | S16-Ma18368  |
| Date Sampled                                      |      |          | Mar 15, 2016  | Mar 16 2016  | Mar 16, 2016 |
|                                                   |      | Linit    | inal 13, 2010 | Mai 10, 2010 | 10,2010      |
| Total Recoverable Hydrocarbons - 1999 NEPM Fract  | ions | Unit     |               |              |              |
|                                                   | 20   | malka    | - 20          | < 20         | < 20         |
| TPH C10 C14                                       | 20   | mg/kg    | < 20          | < 20         | < 20<br>65   |
| TPH C15 C28                                       | 50   | mg/kg    | < 50          | 2000         | 1200         |
| TPH C20 C26                                       | 50   | mg/kg    | 59            | 2900         | 1200         |
| TRH C10.26 (Total)                                | 50   | mg/kg    | 58            | 3300         | 1200         |
| BTEX                                              | 50   | тіу/ку   |               | 3300         | 1300         |
| Benzene                                           | 0.1  | ma/ka    | < 0.1         | < 0.1        | < 0.1        |
|                                                   | 0.1  | mg/kg    | < 0.1         | < 0.1        | < 0.1        |
| Ethylbenzene                                      | 0.1  | mg/kg    | < 0.1         | < 0.1        | < 0.1        |
| m&n-Xylenes                                       | 0.1  | ma/ka    | < 0.2         | < 0.2        | < 0.2        |
| o-Xylene                                          | 0.2  | ma/ka    | < 0.2         | < 0.2        | < 0.1        |
| Xvlenes - Total                                   | 0.3  | ma/ka    | < 0.3         | < 0.3        | < 0.3        |
| 4-Bromofluorobenzene (surr.)                      | 1    | %        | 89            | 73           | 75           |
| Total Recoverable Hydrocarbons - 2013 NEPM Fract  | ions | ,.       |               |              |              |
| Nanhthalene <sup>N02</sup>                        | 0.5  | ma/ka    | < 0.5         | < 0.5        | < 0.5        |
| TRH C6-C10                                        | 20   | ma/ka    | < 20          | < 20         | < 20         |
| TRH C6-C10 less BTEX (F1) <sup>N04</sup>          | 20   | ma/ka    | < 20          | < 20         | < 20         |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 50   | ma/ka    | < 50          | < 50         | 240          |
| Benzo[a]pyrene                                    |      | <u> </u> |               |              |              |
| Benzo(a)pyrene                                    | 0.5  | mg/kg    | < 0.5         | < 0.5        | < 0.5        |
| p-Terphenyl-d14 (surr.)                           | 1    | %        | 106           | 100          | 110          |
| 2-Fluorobiphenyl (surr.)                          | 1    | %        | 87            | 71           | 86           |
| Total Recoverable Hydrocarbons - 2013 NEPM Fract  | ions |          |               |              |              |
| TRH >C10-C16                                      | 50   | mg/kg    | < 50          | < 50         | 240          |
| TRH >C16-C34                                      | 100  | mg/kg    | < 100         | 3300         | 1000         |
| TRH >C34-C40                                      | 100  | mg/kg    | 170           | 200          | < 100        |
|                                                   |      |          |               |              |              |
| Chromium (hexavalent)                             | 1    | mg/kg    | < 1           | < 1          | < 1          |
| % Moisture                                        | 1    | %        | 23            | < 1          | 21           |
| Heavy Metals                                      |      |          |               |              |              |
| Arsenic                                           | 2    | mg/kg    | < 2           | 6.0          | 8.8          |
| Beryllium                                         | 2    | mg/kg    | < 2           | < 2          | < 2          |
| Boron                                             | 10   | mg/kg    | < 10          | < 10         | < 10         |
| Cadmium                                           | 0.4  | mg/kg    | < 0.4         | < 0.4        | < 0.4        |
| Cobalt                                            | 5    | mg/kg    | < 5           | < 5          | < 5          |



| Client Sample ID<br>Sample Matrix |      |       | QC151<br>Soil | QC155<br>Soil | QC158<br>Soil |
|-----------------------------------|------|-------|---------------|---------------|---------------|
| Eurofins   mgt Sample No.         |      |       | S16-Ma18366   | S16-Ma18367   | S16-Ma18368   |
| Date Sampled                      |      |       | Mar 15, 2016  | Mar 16, 2016  | Mar 16, 2016  |
| Test/Reference                    | LOR  | Unit  |               |               |               |
| Heavy Metals                      |      |       |               |               |               |
| Copper                            | 5    | mg/kg | < 5           | 84            | 8.3           |
| Lead                              | 5    | mg/kg | < 5           | 140           | 15            |
| Manganese                         | 5    | mg/kg | < 5           | 28            | 12            |
| Mercury                           | 0.05 | mg/kg | < 0.05        | 0.13          | 0.30          |
| Nickel                            | 5    | mg/kg | < 5           | 5.6           | < 5           |
| Selenium                          | 2    | mg/kg | < 2           | < 2           | < 2           |
| Zinc                              | 5    | mg/kg | < 5           | 700           | 130           |



#### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                     | Testing Site | Extracted    | Holding Time |
|-----------------------------------------------------------------|--------------|--------------|--------------|
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions            | Sydney       | Mar 24, 2016 | 14 Day       |
| - Method: TRH C6-C36 - LTM-ORG-2010                             |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions            | Sydney       | Mar 24, 2016 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                             |              |              |              |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions            | Sydney       | Mar 24, 2016 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                             |              |              |              |
| BTEX                                                            | Sydney       | Mar 24, 2016 | 14 Day       |
| - Method: TRH C6-C40 - LTM-ORG-2010                             |              |              |              |
| Benzo[a]pyrene                                                  | Sydney       | Mar 24, 2016 | 14 Day       |
| - Method: E007 Benzo[a]pyrene                                   |              |              |              |
| Chromium (hexavalent)                                           | Sydney       | Mar 24, 2016 | 28 Day       |
| - Method: E043 /E057 Total Speciated Chromium                   |              |              |              |
| Heavy Metals                                                    | Sydney       | Mar 24, 2016 | 180 Day      |
| - Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury) |              |              |              |
| % Moisture                                                      | Sydney       | Mar 18, 2016 | 14 Day       |
| - Method: LTM-GEN-7080 Moisture                                 |              |              |              |



ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

| Company Name<br>Address:<br>Project Name:<br>Project ID: | e: AECOM<br>Level 21,<br>Sydney<br>NSW 200<br>CALTEX<br>6048880 | Aust Pty Ltd Syd<br>420 George St<br>00<br>KURNELL<br>4/1.2 | ney    |             |      | O<br>R<br>Pl<br>Fa | rder<br>eport<br>hone<br>ax:  | No.:<br>t #:<br>: |                                | 493555<br>02 8934 0000<br>02 8934 0001 | Received:<br>Due:<br>Priority:<br>Contact Name: | Mar 18, 2016 2:00 PM<br>Mar 29, 2016<br>5 Day<br>Stephen Randall |
|----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|--------|-------------|------|--------------------|-------------------------------|-------------------|--------------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------------------------|
|                                                          |                                                                 |                                                             |        |             |      |                    |                               |                   |                                |                                        | Eurofins                                        | mgt Client Manager: Nibha Vaidya                                 |
|                                                          |                                                                 | Sample Detail                                               |        |             | BTEX | Benzo[a]pyrene     | NEPM 2013 Metals : Metals M13 | Moisture Set      | Total Recoverable Hydrocarbons |                                        |                                                 |                                                                  |
| Laboratory where                                         | e analysis is co                                                | onducted                                                    |        |             |      |                    |                               |                   |                                |                                        |                                                 |                                                                  |
| Melbourne Labora                                         | atory - NATA S                                                  | Site # 1254 & 14                                            | 271    |             |      |                    |                               |                   |                                |                                        |                                                 |                                                                  |
| Sydney Laborator                                         | ory - NATA Site                                                 | # 18217                                                     |        |             | Х    | Х                  | Х                             | Х                 | Х                              |                                        |                                                 |                                                                  |
| Brisbane Laborat                                         | tory - NATA Sit                                                 | te # 20794                                                  |        |             |      |                    |                               |                   |                                |                                        |                                                 |                                                                  |
| Sample ID                                                | Sample Date                                                     | Sampling<br>Time                                            | Matrix | LAB ID      |      |                    |                               |                   |                                |                                        |                                                 |                                                                  |
| QC151 M                                                  | /ar 15, 2016                                                    |                                                             | Soil   | S16-Ma18366 | Х    | Х                  | Х                             | Х                 | Х                              |                                        |                                                 |                                                                  |
| QC155 M                                                  | /ar 16, 2016                                                    |                                                             | Soil   | S16-Ma18367 | Х    | Х                  | Х                             | Х                 | Х                              |                                        |                                                 |                                                                  |
| QC158 M                                                  | lar 16, 2016                                                    |                                                             | Soil   | S16-Ma18368 | Х    | Х                  | Х                             | Х                 | Х                              |                                        |                                                 |                                                                  |



#### Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

Terms

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting. SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery Method Blank In the case of solid samples these are performed on laboratory certified clean sands In the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison. Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis. USEPA United States Environmental Protection Agency APHA American Public Health Association ASLP Australian Standard Leaching Procedure (Eurofins | mot uses NATA accredited in-house method LTM-GEN-7010) TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody Sample Receipt Advice SRA СР Client Parent - QC was performed on samples pertaining to this report NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within TEQ Toxic Equivalency Quotient

#### **QC** - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$ 

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



#### **Quality Control Results**

| Test                                                 | Units  | Result 1 |   | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|------------------------------------------------------|--------|----------|---|----------------------|----------------|--------------------|
| Method Blank                                         |        |          | I |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |        |          |   |                      |                |                    |
| TRH C6-C9                                            | mg/kg  | < 20     |   | 20                   | Pass           |                    |
| TRH C10-C14                                          | mg/kg  | < 20     |   | 20                   | Pass           |                    |
| TRH C15-C28                                          | mg/kg  | < 50     |   | 50                   | Pass           |                    |
| TRH C29-C36                                          | mg/kg  | < 50     |   | 50                   | Pass           |                    |
| Method Blank                                         |        |          |   |                      | 1              |                    |
| втех                                                 |        |          |   |                      |                |                    |
| Benzene                                              | mg/kg  | < 0.1    |   | 0.1                  | Pass           |                    |
| Toluene                                              | mg/kg  | < 0.1    |   | 0.1                  | Pass           |                    |
| Ethylbenzene                                         | mg/kg  | < 0.1    |   | 0.1                  | Pass           |                    |
| m&p-Xylenes                                          | mg/kg  | < 0.2    |   | 0.2                  | Pass           |                    |
| o-Xylene                                             | mg/kg  | < 0.1    |   | 0.1                  | Pass           |                    |
| Xylenes - Total                                      | mg/kg  | < 0.3    |   | 0.3                  | Pass           |                    |
| Method Blank                                         |        | 1        |   |                      | 1              |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions |        | 0.5      |   | 0.5                  | Dese           |                    |
| Naphthalene                                          | mg/kg  | < 0.5    |   | 0.5                  | Pass           |                    |
| TRH C6-C10                                           | mg/kg  | < 20     |   | 20                   | Pass           |                    |
|                                                      |        |          |   |                      |                |                    |
| Benzo(a)pyrene                                       |        | .05      |   | 0.5                  | Dees           |                    |
| Benzo(a)pyrene                                       | mg/kg  | < 0.5    |   | 0.5                  | Pass           |                    |
| Method Blank                                         |        |          |   | 1                    | 1              |                    |
|                                                      | malka  | < 50     |   | 50                   | Dooo           |                    |
|                                                      | mg/kg  | < 50     |   | 100                  | Pass           |                    |
| TRH > C10-C34                                        | mg/kg  | < 100    |   | 100                  | Pass           |                    |
| Method Blook                                         | під/ку | < 100    |   | 100                  | F 455          |                    |
| Chromium (hoxavalant)                                | ma/ka  | - 1      |   | 1                    | Page           |                    |
| Method Blank                                         | шу/ку  |          |   | 1                    | газэ           |                    |
| Heavy Metals                                         |        |          |   |                      |                |                    |
| Arsenic                                              | ma/ka  | < 2      |   | 2                    | Pass           |                    |
| Bervllium                                            | ma/ka  | < 2      |   | 2                    | Pass           |                    |
| Boron                                                | ma/ka  | < 10     |   | 10                   | Pass           |                    |
| Cadmium                                              | ma/ka  | < 0.4    |   | 0.4                  | Pass           |                    |
| Cobalt                                               | ma/ka  | < 5      |   | 5                    | Pass           |                    |
| Copper                                               | ma/ka  | < 5      |   | 5                    | Pass           |                    |
| Lead                                                 | ma/ka  | < 5      |   | 5                    | Pass           |                    |
| Manganese                                            | mg/kg  | < 5      |   | 5                    | Pass           |                    |
| Mercury                                              | mg/kg  | < 0.05   |   | 0.05                 | Pass           |                    |
| Nickel                                               | mg/kg  | < 5      |   | 5                    | Pass           |                    |
| Selenium                                             | mg/kg  | < 2      |   | 2                    | Pass           |                    |
| Zinc                                                 | mg/kg  | < 5      |   | 5                    | Pass           |                    |
| LCS - % Recovery                                     |        |          |   |                      |                |                    |
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions |        |          |   |                      |                |                    |
| TRH C6-C9                                            | %      | 81       |   | 70-130               | Pass           |                    |
| TRH C10-C14                                          | %      | 94       |   | 70-130               | Pass           |                    |
| LCS - % Recovery                                     |        |          |   |                      |                |                    |
| ВТЕХ                                                 |        |          |   |                      |                |                    |
| Benzene                                              | %      | 110      |   | 70-130               | Pass           |                    |
| Toluene                                              | %      | 93       |   | 70-130               | Pass           |                    |
| Ethylbenzene                                         | %      | 102      |   | 70-130               | Pass           |                    |
| m&p-Xylenes                                          | %      | 111      |   | 70-130               | Pass           |                    |



| Test                             |                 | Units        | Result 1 |          | Acceptance<br>Limits | Pass<br>Limits       | Qualifying<br>Code |                    |
|----------------------------------|-----------------|--------------|----------|----------|----------------------|----------------------|--------------------|--------------------|
| o-Xylene                         |                 |              | %        | 109      |                      | 70-130               | Pass               |                    |
| Xylenes - Total                  |                 |              | %        | 110      |                      | 70-130               | Pass               |                    |
| LCS - % Recovery                 |                 |              |          |          |                      |                      |                    |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |          |          |                      |                      |                    |                    |
| Naphthalene                      |                 |              | %        | 124      |                      | 70-130               | Pass               |                    |
| TRH C6-C10                       |                 |              | %        | 90       |                      | 70-130               | Pass               |                    |
| LCS - % Recovery                 |                 |              |          |          |                      |                      |                    |                    |
| Benzo[a]pyrene                   |                 |              |          |          |                      |                      |                    |                    |
| Benzo(a)pyrene                   |                 |              | %        | 104      |                      | 70-130               | Pass               |                    |
| LCS - % Recovery                 |                 |              |          |          |                      |                      |                    |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |          |          |                      |                      |                    |                    |
| TRH >C10-C16                     |                 |              | %        | 95       |                      | 70-130               | Pass               |                    |
| LCS - % Recovery                 |                 |              |          |          |                      |                      |                    |                    |
| Chromium (hexavalent)            |                 |              | %        | 88       |                      | 70-130               | Pass               |                    |
| LCS - % Recovery                 |                 |              |          |          |                      |                      |                    |                    |
| Heavy Metals                     |                 |              |          |          |                      |                      |                    |                    |
| Arsenic                          |                 |              | %        | 89       |                      | 70-130               | Pass               |                    |
| Beryllium                        |                 |              | %        | 92       |                      | 70-130               | Pass               |                    |
| Boron                            |                 |              | %        | 92       |                      | 70-130               | Pass               |                    |
| Cadmium                          |                 |              | %        | 91       |                      | 70-130               | Pass               |                    |
| Cobalt                           |                 |              | %        | 90       |                      | 70-130               | Pass               |                    |
| Copper                           |                 |              | %        | 92       |                      | 70-130               | Pass               |                    |
| Lead                             |                 |              | %        | 93       |                      | 70-130               | Pass               |                    |
| Manganese                        |                 |              | %        | 94       |                      | 70-130               | Pass               |                    |
| Mercury                          |                 |              | %        | 98       |                      | 70-130               | Pass               |                    |
| Nickel                           |                 |              | %        | 93       |                      | 70-130               | Pass               |                    |
| Selenium                         |                 |              | %        | 94       |                      | 70-130               | Pass               |                    |
| Zinc                             |                 |              | %        | 90       |                      | 70-130               | Pass               |                    |
| Test                             | Lab Sample ID   | QA<br>Source | Units    | Result 1 |                      | Acceptance<br>Limits | Pass<br>Limits     | Qualifying<br>Code |
| Spike - % Recovery               |                 |              |          |          |                      |                      |                    |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions         |          | Result 1 |                      |                      |                    |                    |
| TRH C6-C9                        | S16-Ma22656     | NCP          | %        | 82       |                      | 70-130               | Pass               |                    |
| TRH C10-C14                      | S16-Ma17913     | NCP          | %        | 75       |                      | 70-130               | Pass               |                    |
| Spike - % Recovery               |                 |              |          |          |                      |                      |                    |                    |
| BTEX                             |                 |              |          | Result 1 |                      |                      |                    |                    |
| Benzene                          | S16-Ma22656     | NCP          | %        | 102      |                      | 70-130               | Pass               |                    |
| Toluene                          | S16-Ma22656     | NCP          | %        | 92       |                      | 70-130               | Pass               |                    |
| Ethylbenzene                     | S16-Ma22656     | NCP          | %        | 109      |                      | 70-130               | Pass               |                    |
| m&p-Xylenes                      | S16-Ma22656     | NCP          | %        | 126      |                      | 70-130               | Pass               |                    |
| o-Xylene                         | S16-Ma22656     | NCP          | %        | 120      |                      | 70-130               | Pass               |                    |
| Xylenes - Total                  | S16-Ma22656     | NCP          | %        | 124      |                      | 70-130               | Pass               |                    |
| Spike - % Recovery               |                 |              |          |          |                      |                      |                    |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |          | Result 1 |                      |                      |                    |                    |
| Naphthalene                      | S16-Ma22656     | NCP          | %        | 107      |                      | 70-130               | Pass               |                    |
| TRH C6-C10                       | S16-Ma22656     | NCP          | %        | 92       |                      | 70-130               | Pass               |                    |
| Spike - % Recovery               |                 |              |          |          |                      |                      |                    |                    |
| Benzo[a]pyrene                   |                 |              |          | Result 1 |                      |                      |                    |                    |
| Benzo(a)pyrene                   | S16-Ma17655     | NCP          | %        | 92       |                      | 70-130               | Pass               |                    |
| Spike - % Recovery               |                 |              |          |          | · · · · ·            |                      |                    |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |          | Result 1 |                      |                      |                    |                    |
| TRH >C10-C16                     | S16-Ma17913     | NCP          | %        | 75       |                      | 70-130               | Pass               |                    |
| Spike - % Recovery               |                 |              |          |          | · · · · · ·          |                      |                    |                    |
| Heavy Metals                     |                 |              |          | Result 1 |                      |                      |                    |                    |
| Are en ie                        | S16-Ma21052     | NCP          | %        | 84       |                      | 70-130               | Pass               |                    |
| Arsenic                          |                 |              |          |          |                      |                      |                    | .                  |



| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Beryllium                        | S16-Ma21052     | NCP          | %     | 88       |          |     | 70-130               | Pass           |                    |
| Boron                            | S16-Ma21052     | NCP          | %     | 77       |          |     | 70-130               | Pass           |                    |
| Cadmium                          | S16-Ma21052     | NCP          | %     | 92       |          |     | 70-130               | Pass           |                    |
| Cobalt                           | S16-Ma18474     | NCP          | %     | 82       |          |     | 70-130               | Pass           |                    |
| Copper                           | S16-Ma18474     | NCP          | %     | 83       |          |     | 70-130               | Pass           |                    |
| Lead                             | S16-Ma18474     | NCP          | %     | 85       |          |     | 70-130               | Pass           |                    |
| Manganese                        | S16-Ma18474     | NCP          | %     | 83       |          |     | 70-130               | Pass           |                    |
| Mercury                          | S16-Ma18474     | NCP          | %     | 89       |          |     | 70-130               | Pass           |                    |
| Nickel                           | S16-Ma18474     | NCP          | %     | 83       |          |     | 70-130               | Pass           |                    |
| Selenium                         | S16-Ma18474     | NCP          | %     | 95       |          |     | 70-130               | Pass           |                    |
| Zinc                             | S16-Ma18474     | NCP          | %     | 83       |          |     | 70-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |          |     |                      |                |                    |
|                                  |                 |              |       | Result 1 |          |     |                      |                |                    |
| Chromium (hexavalent)            | S16-Ma18367     | CP           | %     | 122      |          |     | 70-130               | Pass           |                    |
| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                        |                 |              |       |          |          |     |                      |                |                    |
| Total Recoverable Hydrocarbons - | 1999 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                        | S16-Ma22655     | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                      | S16-Ma21449     | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                      | S16-Ma21449     | NCP          | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| TRH C29-C36                      | S16-Ma21449     | NCP          | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     | •                    |                |                    |
| BTEX                             |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzene                          | S16-Ma22655     | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Toluene                          | S16-Ma22655     | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                     | S16-Ma22655     | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                      | S16-Ma22655     | NCP          | mg/kg | < 0.2    | < 0.2    | <1  | 30%                  | Pass           |                    |
| o-Xylene                         | S16-Ma22655     | NCP          | mg/kg | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Xylenes - Total                  | S16-Ma22655     | NCP          | mg/kg | < 0.3    | < 0.3    | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     | _                    |                |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Naphthalene                      | S16-Ma22655     | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                       | S16-Ma22655     | NCP          | mg/kg | < 20     | < 20     | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     |                      |                |                    |
| Benzo[a]pyrene                   |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzo(a)pyrene                   | S16-Ma21449     | NCP          | mg/kg | < 0.5    | < 0.5    | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     |                      |                |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH >C10-C16                     | S16-Ma21449     | NCP          | mg/kg | < 50     | < 50     | <1  | 30%                  | Pass           |                    |
| TRH >C16-C34                     | S16-Ma21449     | NCP          | mg/kg | < 100    | < 100    | <1  | 30%                  | Pass           |                    |
| TRH >C34-C40                     | S16-Ma21449     | NCP          | mg/kg | < 100    | < 100    | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     | 1                    |                |                    |
|                                  |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Chromium (hexavalent)            | S16-Ma18366     | CP           | mg/kg | < 1      | < 1      | <1  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     | -                    |                |                    |
|                                  |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| % Moisture                       | S16-Ma18368     | СР           | %     | 21       | 17       | 17  | 30%                  | Pass           |                    |
| Duplicate                        |                 |              |       |          |          |     | -                    |                |                    |
| Heavy Metals                     |                 |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Arsenic                          | S16-Ma18368     | CP           | mg/kg | 8.8      | 6.7      | 26  | 30%                  | Pass           |                    |
| Beryllium                        | S16-Ma18368     | CP           | mg/kg | < 2      | < 2      | <1  | 30%                  | Pass           |                    |
| Boron                            | S16-Ma18368     | CP           | mg/kg | < 10     | < 10     | <1  | 30%                  | Pass           |                    |
| Cadmium                          | S16-Ma18368     | CP           | mg/kg | < 0.4    | < 0.4    | <1  | 30%                  | Pass           |                    |
| Cobalt                           | S16-Ma18368     | CP           | mg/kg | < 5      | < 5      | <1  | 30%                  | Pass           |                    |



| Duplicate    |             |    |       |          |          |     |     |      |  |
|--------------|-------------|----|-------|----------|----------|-----|-----|------|--|
| Heavy Metals |             |    |       | Result 1 | Result 2 | RPD |     |      |  |
| Copper       | S16-Ma18368 | СР | mg/kg | 8.3      | 9.4      | 12  | 30% | Pass |  |
| Lead         | S16-Ma18368 | CP | mg/kg | 15       | 20       | 28  | 30% | Pass |  |
| Manganese    | S16-Ma18368 | СР | mg/kg | 12       | 9.9      | 21  | 30% | Pass |  |
| Mercury      | S16-Ma18368 | СР | mg/kg | 0.30     | 0.30     | <1  | 30% | Pass |  |
| Nickel       | S16-Ma18368 | СР | mg/kg | < 5      | < 5      | <1  | 30% | Pass |  |
| Selenium     | S16-Ma18368 | СР | mg/kg | < 2      | < 2      | <1  | 30% | Pass |  |
| Zinc         | S16-Ma18368 | СР | mg/kg | 130      | 130      | 5.0 | 30% | Pass |  |



#### Comments

| Sample Integrity                                                        |     |
|-------------------------------------------------------------------------|-----|
| Custody Seals Intact (if used)                                          | N/A |
| Attempt to Chill was evident                                            | Yes |
| Sample correctly preserved                                              | Yes |
| Appropriate sample containers have been used                            | Yes |
| Sample containers for volatile analysis received with minimal headspace | Yes |
| Samples received within HoldingTime                                     | Yes |
| Some samples have been subcontracted                                    | No  |

#### **Qualifier Codes/Comments**

Code Description

| N01 | F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).                                                                                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N02 | Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid. |
| N04 | F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.                                                                                                                              |

#### Authorised By

| Nibha Vaidya  | Analytical Services Manager    |
|---------------|--------------------------------|
| Bob Symons    | Senior Analyst-Inorganic (NSW) |
| Ivan Taylor   | Senior Analyst-Metal (NSW)     |
| Ryan Hamilton | Senior Analyst-Organic (NSW)   |
| Ryan Hamilton | Senior Analyst-Volatile (NSW)  |

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

\* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Kurnell Asbestos Contaminated Soils Management Project Pipeways Asbestos Contaminated Soils Waste Classification Report Commercial-in-Confidence

## Appendix F

# **Data Validation**



| DATA VALIDA               | TION REP        | ORT                                                                                                                                |                                                                                                                                                             |                                                                                                         |  |  |  |
|---------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Project<br>number:        | 60488804        |                                                                                                                                    | <b>Validation<br/>by:</b><br>Hamish<br>Watkins                                                                                                              | Date: 02/05/2016                                                                                        |  |  |  |
| Client:                   | Caltex          |                                                                                                                                    | Data                                                                                                                                                        | Date: 03/05/2016                                                                                        |  |  |  |
| Site:                     | Kurnell         |                                                                                                                                    | <b>by:</b> Kate<br>McGrath                                                                                                                                  |                                                                                                         |  |  |  |
| Matrix type:              | Soil            |                                                                                                                                    |                                                                                                                                                             |                                                                                                         |  |  |  |
| Primary<br>samples:       | QC151,<br>QC158 | QC155,                                                                                                                             |                                                                                                                                                             |                                                                                                         |  |  |  |
| Laboratory:               | Eurofins        | (Secondary                                                                                                                         | ),                                                                                                                                                          |                                                                                                         |  |  |  |
| Project<br>Manager:       | Stephen         | Randall                                                                                                                            | Lab report reference                                                                                                                                        | <b>e</b> : 493555                                                                                       |  |  |  |
| Кеу                       |                 | No QA/QC                                                                                                                           | issues were identified                                                                                                                                      | I in the field or laboratory datasets that could have a                                                 |  |  |  |
| Field Quality A           | ssurance        | and Quality                                                                                                                        | v Control                                                                                                                                                   | making on the project.                                                                                  |  |  |  |
| Sampling perso            | nnel            | All samplir                                                                                                                        | ng was conducted by k                                                                                                                                       | Cate Pigram on the 14,15 and 16 March 2016.                                                             |  |  |  |
| Sampling Metho            | odology         | Samples v                                                                                                                          | vere collected directly                                                                                                                                     | from the hand auger or solid stem auger.                                                                |  |  |  |
| Chain of Custor           | dv (COC)        | Chain of c                                                                                                                         | ustody documents cor                                                                                                                                        | npleted by Kate Pigram                                                                                  |  |  |  |
| Field Blank               | No field bl     |                                                                                                                                    | blanks were utilised.                                                                                                                                       |                                                                                                         |  |  |  |
| Rinsate Blank             |                 | No rinsate                                                                                                                         | insate blanks were analysed.                                                                                                                                |                                                                                                         |  |  |  |
| Trip Blank/Spike          | e               | No trip spi                                                                                                                        | trip spikes or blanks were taken.                                                                                                                           |                                                                                                         |  |  |  |
| Frequency of fie          | eld QC          | Inter-labor                                                                                                                        | er-laboratory samples from ES160683                                                                                                                         |                                                                                                         |  |  |  |
| Handling and preservation |                 | Samples v<br>were recei                                                                                                            | ples were received preserved and chilled $(1 ^{\circ}\text{C})$ at the laboratory. All samples received at the laboratory in appropriate sample containers. |                                                                                                         |  |  |  |
| Laboratory QA             | /QC             |                                                                                                                                    |                                                                                                                                                             |                                                                                                         |  |  |  |
| Tests<br>requested/report | rted            | Samples v                                                                                                                          | vere analysed and rep                                                                                                                                       | orted as requested on the Chain Of Custody (COC).                                                       |  |  |  |
| Holding time              |                 | Samples v                                                                                                                          | vere extracted and and                                                                                                                                      | alysed within recommended holding times.                                                                |  |  |  |
| Laboratory Accr           | reditation      | The labora<br>National A                                                                                                           | ntory analysis was con<br>ssociation of Testing /                                                                                                           | ducted by Eurofins Pty Ltd (Sydney), which is a<br>Authorities (NATA) accredited laboratories.          |  |  |  |
| Frequency of la QC        | boratory        | The labora whether th                                                                                                              | atory reported an insuf<br>e results have been re                                                                                                           | ficient frequency of quality control samples to assess eported to an acceptable accuracy and precision. |  |  |  |
| Method Blank              |                 | Method bla                                                                                                                         | ank concentrations we                                                                                                                                       | re not detected above the LOR for all analytes                                                          |  |  |  |
| Laboratory dupl<br>RPDs   | licate          | Laboratory duplicates were reported on anonymous samples and the Relative Percentage Differences (RPD) were within control limits. |                                                                                                                                                             |                                                                                                         |  |  |  |
| Laboratory cont recovery  | rol spike       | Laboratory Control Spike (LCS) recoveries were within control limits.                                                              |                                                                                                                                                             |                                                                                                         |  |  |  |
| Matrix spike rec          | covery          | Matrix spik                                                                                                                        | xes (MS) were conduc                                                                                                                                        | ed on anonymous samples and within control limits.                                                      |  |  |  |
| Surrogate spike recovery  |                 | Surrogates                                                                                                                         | s were not reported.                                                                                                                                        |                                                                                                         |  |  |  |
| QA/QC Data Ev             | valuation       |                                                                                                                                    |                                                                                                                                                             |                                                                                                         |  |  |  |
| Comparison of             | Field           | No anoma                                                                                                                           | lous results between f                                                                                                                                      | eld observations and analysis results were noted.                                                       |  |  |  |
| Laboratory Res            | na<br>ults      |                                                                                                                                    |                                                                                                                                                             |                                                                                                         |  |  |  |



| ION REP                        | ORT                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 6048880                        | 4                                                                                                                    | <b>Validation<br/>by:</b><br>Hamish<br>Watkins                                                                                                                                                                                           | Date: 02/05/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Caltex                         |                                                                                                                      | Data                                                                                                                                                                                                                                     | Date: 03/05/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Kurnell                        |                                                                                                                      | <b>verified<br/>by:</b> Kate<br>McGrath                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Soil                           |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| QC151, 0<br>QC158              | QC155,                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Eurofins                       | (Secondary                                                                                                           | ),                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Stephen                        | Randall                                                                                                              | Lab report reference:                                                                                                                                                                                                                    | 493555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ne data<br>Results             | No anoma                                                                                                             | alous results between data input and laboratory analysis results were noted.                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Limits of reporting Lim<br>ado |                                                                                                                      | imits of Reporting (LORs) were sufficiently low to enable assessment against dopted guideline criteria.                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                | Not applica                                                                                                          | able.                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                | Not applica                                                                                                          | able.                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| veries                         | Not applica                                                                                                          | able.                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| S                              |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                | ION REP<br>6048880<br>Caltex<br>Kurnell<br>Soil<br>QC151,<br>QC158<br>Eurofins<br>Stephen<br>re data<br>Results<br>g | ION REPORT<br>60488804<br>Caltex<br>Kurnell<br>Soil<br>QC151, QC155,<br>QC158<br>Eurofins (Secondary<br>Stephen Randall<br>ne data No anoma<br>Results<br>g Limits of R<br>adopted g<br>Not applica<br>Not applica<br>veries Not applica | 604888804       Validation<br>by:<br>Hamish<br>Watkins         Caltex       Data<br>Verified<br>by: Kate<br>McGrath         Soil       verified<br>crath         QC151, QC155,<br>QC158       Lab report reference:         Eurofins (Secondary),       Stephen Randall         Lab report reference:       No anomalous results between date<br>Results         g       Limits of Reporting (LORs) were su<br>adopted guideline criteria.<br>Not applicable.         veries       Not applicable. |  |  |  |



| DATA VALIDAT                         |                                         | ORT                                                                   |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
|--------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Project                              | 6048880                                 | 4                                                                     | Validation                                                                                                                                                                                                                                                                            | Date: 02/05/2016                                                        |  |  |  |
| number:                              | 0040000                                 |                                                                       | by:                                                                                                                                                                                                                                                                                   | <b>Dute:</b> 02/00/2010                                                 |  |  |  |
|                                      |                                         |                                                                       | Hamish<br>Watkins                                                                                                                                                                                                                                                                     |                                                                         |  |  |  |
| Client:                              | Calter                                  |                                                                       | Nata                                                                                                                                                                                                                                                                                  | Date: 03/05/2016                                                        |  |  |  |
| Olient.                              |                                         |                                                                       | verified                                                                                                                                                                                                                                                                              | Date: 03/03/2010                                                        |  |  |  |
| Site:                                | Kurnell                                 |                                                                       | <b>by:</b> Kate<br>McGrath                                                                                                                                                                                                                                                            |                                                                         |  |  |  |
| Matrix type:                         | Soil                                    |                                                                       |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
| Primary                              | 35 (refer                               | to lab                                                                |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
| samples:                             | report)                                 |                                                                       |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
| Laboratory:                          | ALS (prii                               | mary), Eurof                                                          | ins (secondary)                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
| Project                              | Stephen                                 | Randall                                                               | Lab report reference:                                                                                                                                                                                                                                                                 | ES1606083                                                               |  |  |  |
| Manager:                             |                                         | N. 0.1/00                                                             |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
| Key<br>Issues:                       |                                         | No QA/QC<br>material in                                               | issues were identified in<br>aplication to decision-mal                                                                                                                                                                                                                               | the field or laboratory datasets that could have a king on the project. |  |  |  |
| Field Quality As                     | ssurance                                | and Quality                                                           | y Control                                                                                                                                                                                                                                                                             |                                                                         |  |  |  |
| Sampling persor                      | nnel                                    | All samplir                                                           | ng was conducted by Kat                                                                                                                                                                                                                                                               | e Pigram on the 14,15 and 16 March 2016.                                |  |  |  |
| Sampling Metho                       | dology                                  | Samples w                                                             | s were collected directly from the hand auger or solid stem auger.                                                                                                                                                                                                                    |                                                                         |  |  |  |
| Chain of Custod                      | y (COC)                                 | Chain of c                                                            | of custody documents completed by Kate Pigram.                                                                                                                                                                                                                                        |                                                                         |  |  |  |
| Field Blank (QC162) One field        |                                         | One field b                                                           | olanks were utilised.                                                                                                                                                                                                                                                                 |                                                                         |  |  |  |
| Rinsate Blank (QC153 Two<br>& QC160) |                                         | Two rinsat                                                            | Two rinsate blanks were analysed.                                                                                                                                                                                                                                                     |                                                                         |  |  |  |
| Trip Blank/Spike<br>(QC153)          | Trip Blank/Spike One trip bl<br>(QC153) |                                                                       | ank was utilised.                                                                                                                                                                                                                                                                     |                                                                         |  |  |  |
| Frequency of fie                     | ld QC                                   | Three inter<br>(QC150, C                                              | er-laboratory (QC151, QC155 & QC158) and 4 intra-laboratory duplicates QC152, QC154 & QC157) were analysed.                                                                                                                                                                           |                                                                         |  |  |  |
| Handling and preservation            |                                         | Samples w<br>were recei                                               | were received preserved and chilled (4.6 °C) at the laboratory. All samples eived at the laboratory in appropriate sample containers.                                                                                                                                                 |                                                                         |  |  |  |
| Laboratory QA                        | /QC                                     |                                                                       |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
| Tests                                |                                         | Samples w                                                             | vere analysed and report                                                                                                                                                                                                                                                              | ed as requested on the Chain Of Custody (COC).                          |  |  |  |
| requested/repor                      | ted                                     |                                                                       |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |
| Holding time<br>compliance           |                                         | Samples w                                                             | vere extracted and analysed within recommended holding times.                                                                                                                                                                                                                         |                                                                         |  |  |  |
| Laboratory Accr                      | editation                               | The labora is a Nation                                                | atory analysis was conducted by ALS Environmental Pty Ltd (Sydney), which<br>nal Association of Testing Authorities (NATA) accredited laboratories.                                                                                                                                   |                                                                         |  |  |  |
| Frequency of lat                     | ooratory                                | The labora whether th                                                 | tory reported a sufficient frequency of quality control samples to assess                                                                                                                                                                                                             |                                                                         |  |  |  |
| Method Blank                         |                                         | Method bla                                                            | ank concentrations were                                                                                                                                                                                                                                                               | not detected above the LOR for all analytes                             |  |  |  |
| Laboratory dupli<br>RPDs             | cate                                    | Laboratory<br>Relative Pe<br>duplicates<br>samples. T<br>Control Re   | duplicates (LD) were conducted on AECOM and anonymous samples. LD<br>ercentage Differences (RPD) were within control limits. Laboratory<br>were also conducted for water on AECOM sample QC161 and anonymous<br>The laboratory duplicate RPDs are presented in the laboratory Quality |                                                                         |  |  |  |
| Laboratory contr<br>recovery         | rol spike                               | Laboratory Control Spike (LCS) recoveries were within control limits. |                                                                                                                                                                                                                                                                                       |                                                                         |  |  |  |



| DATA VALIDA                                                | TION REP                                       | ORT                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |                                |  |  |  |
|------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| Project<br>number:                                         | 60488804                                       |                                                                                                                                                                                                                                                                                                                           | <b>Validation<br/>by:</b><br>Hamish<br>Watkins                                                                                                                                                                               | Date: 02/05/2016               |  |  |  |
| Client:                                                    | Caltex                                         |                                                                                                                                                                                                                                                                                                                           | Data                                                                                                                                                                                                                         | Date: 03/05/2016               |  |  |  |
| Site:                                                      | Kurnell                                        |                                                                                                                                                                                                                                                                                                                           | <b>verified</b><br><b>by:</b> Kate<br>McGrath                                                                                                                                                                                |                                |  |  |  |
| Matrix type:                                               | Soil                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                |  |  |  |
| Primary<br>samples:                                        | 35 (refer<br>report)                           | to lab                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                |  |  |  |
| Laboratory:                                                | ALS (pri                                       | mary), Eurof                                                                                                                                                                                                                                                                                                              | ins (secondary)                                                                                                                                                                                                              |                                |  |  |  |
| Project<br>Manager:                                        | Stephen                                        | Randall                                                                                                                                                                                                                                                                                                                   | Lab report refere                                                                                                                                                                                                            | ence: ES1606083                |  |  |  |
| Matrix spike rec                                           | Matrix spike recovery Matrix<br>repor<br>recov |                                                                                                                                                                                                                                                                                                                           | atrix spikes (MS) were conducted on AECOM samples. All MS recoveries (where ported) were within control limits with the exception of B001_0.0-0.2 where MS covery was not determined for C15-28, C29-36, C16-34 and >C34-40. |                                |  |  |  |
| Surrogate spike<br>recovery                                |                                                | Surrogates were conducted on AECOM Samples. All surrogate recoveries were within control limits with the following exceptions: B016_0.0-0.2 – 2,4,6-Tribromophenol (142%), A013_0.0-0.2 – 2-Fluorobiphenyl (69.5%), QC150 – 2-Fluorobiphenyl (66.4%), QC157 – 2-Fluorobiphenyl (62.6%) and QC154 – 4-Terphenyl-d14 (133%) |                                                                                                                                                                                                                              |                                |  |  |  |
| QA/QC Data Ev                                              | valuation                                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                |  |  |  |
| Comparison of<br>Observations an<br>Laboratory Res         | Field<br>nd<br>ults                            | No anoma                                                                                                                                                                                                                                                                                                                  | lous results between field observations and analysis results were noted.                                                                                                                                                     |                                |  |  |  |
| Comparison of and Laboratory                               | the data<br>Results                            | No anoma                                                                                                                                                                                                                                                                                                                  | lous results between data input and laboratory analysis results were noted.                                                                                                                                                  |                                |  |  |  |
| Limits of reporti                                          | ng                                             | Limits of R<br>adopted gu                                                                                                                                                                                                                                                                                                 | Reporting (LORs) were sufficiently low to enable assessment against guideline criteria.                                                                                                                                      |                                |  |  |  |
| Intra-laboratory Three intra<br>duplicate RPDs control lim |                                                | a-laboratory duplicates were analysed and RPDs were within acceptable its, with the exception of the results listed in the comments below.                                                                                                                                                                                |                                                                                                                                                                                                                              |                                |  |  |  |
| Inter-laboratory Four inte<br>duplicate RPDs control I     |                                                | Four inter-<br>control limi                                                                                                                                                                                                                                                                                               | r-laboratory duplicates were analysed and RPDs were within acceptable nits, with the exception of the results listed in the comments below.                                                                                  |                                |  |  |  |
| Trip Spike Reco                                            | overies                                        | The trip sp                                                                                                                                                                                                                                                                                                               | ike recoveries were                                                                                                                                                                                                          | e within the acceptable range. |  |  |  |
| Chromatogram                                               | าร                                             |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                |  |  |  |
| Not required.                                              |                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                |  |  |  |
| Other                                                      |                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                |  |  |  |



#### DATA VALIDATION REPORT Project 60488804 Validation Date: 02/05/2016 number: by: Hamish Watkins **Client:** Caltex Data Date: 03/05/2016 verified Site: Kurnell by: Kate McGrath Matrix type: Soil 35 (refer to lab Primary samples: report) Laboratory: ALS (primary), Eurofins (secondary) Project Stephen Randall Lab report reference: ES1606083 Manager: Comments: The following high RPDs are likely attributed to sample heterogeneity and do not affect the assessment of the results:

- Inter-laboratory duplicate A014.5\_0.4-0.5/QC158: RPD for zinc 130%

Intra-laboratory duplicate A013.5\_0.0-0.2/QC157: RPD for TRH C10-C40 fractions 57 to 171%

- Intra-laboratory duplicate B010.5\_0.4-0.5/QC150: RPD for zinc 45% and TRH C10-C14 fractions 188% As mentioned by ALS:

- Poor matric spike recovery was obtained for Mercury on samples EP1602288-1 due to high matrix interface.

- Matrix spike recovery was not determined in the aforementioned analytes due to high concentrations.

- Particular samples required sample matrix dilution.

 Surrogate spike recoveries outside of recovery limits should not influence data integrity as all are outside of the range by <10%.</li>



| DATA VALIDA                 | TION REP                           | ORT                                 |                                                                                                                                                                                                                 |                                                                                                   |  |  |  |
|-----------------------------|------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
| Project<br>number:          | 6048880                            | )4                                  | <b>Validation<br/>by:</b><br>Hamish<br>Watkins                                                                                                                                                                  | Date: 02/05/2016                                                                                  |  |  |  |
| Client:                     | Caltex                             |                                     | Data                                                                                                                                                                                                            | Date: 3/05/2016                                                                                   |  |  |  |
| Site:                       | Kurnell                            |                                     | verified<br>by: Kate<br>McGrath                                                                                                                                                                                 |                                                                                                   |  |  |  |
| Matrix type:                | Soil                               |                                     |                                                                                                                                                                                                                 |                                                                                                   |  |  |  |
| Primary<br>samples:         | A005.5_<br>B007.5_<br>B035_0.      | 0.0-0.2<br>0.0-0.2<br>0-0.3         | B009.5_0.0-0.2<br>B012.5_0.0-0.2<br>B016_0.0-0.2                                                                                                                                                                |                                                                                                   |  |  |  |
| Laboratory:                 | ALS (pri                           | mary)                               |                                                                                                                                                                                                                 |                                                                                                   |  |  |  |
| Project<br>Manager:         | Stephen                            | Randell                             | Lab report reference:                                                                                                                                                                                           | ES1607003                                                                                         |  |  |  |
| Key                         |                                    | No QA/QC                            | issues were identified ir                                                                                                                                                                                       | the field or laboratory datasets that could have a                                                |  |  |  |
| Field Quality A             | ssurance                           | and Quality                         | v Control                                                                                                                                                                                                       |                                                                                                   |  |  |  |
| Sampling perso              | onnel                              | All samplin                         | on was conducted by Kat                                                                                                                                                                                         | e Pigram on the 14 15 and 16 March 2016                                                           |  |  |  |
| Sampling Meth               | odology                            | Samples w                           | vere collected directly fro                                                                                                                                                                                     | m the hand auger or solid stem auger                                                              |  |  |  |
| Chain of Custo              | Chain of Custody (COC) Chain of cu |                                     | ustody documents completed by Kate Pigram on original order. This                                                                                                                                               |                                                                                                   |  |  |  |
| Field Blank                 | Not applic                         |                                     | able as re-batch of ES1606083.                                                                                                                                                                                  |                                                                                                   |  |  |  |
| Rinsate Blank               |                                    | Not applica                         | able as re-batch of ES1606083.                                                                                                                                                                                  |                                                                                                   |  |  |  |
| Trip Blank/Spik             | p Blank/Spike Not applic:          |                                     | able as re-batch of ES1606083.                                                                                                                                                                                  |                                                                                                   |  |  |  |
| Frequency of fi             | eld QC                             | Not applica                         | able as re-batch of ES16                                                                                                                                                                                        | 06083.                                                                                            |  |  |  |
| Handling and preservation   |                                    | Samples v<br>were recei             | vere received preserved and chilled (3.5 °C) at the laboratory. All samples ved at the laboratory in appropriate sample containers.                                                                             |                                                                                                   |  |  |  |
| Laboratory QA               | /QC                                |                                     |                                                                                                                                                                                                                 |                                                                                                   |  |  |  |
| Tests                       | ut - d                             | Samples v                           | vere analysed and report                                                                                                                                                                                        | ed as requested on the Chain Of Custody (COC).                                                    |  |  |  |
| Holding time                | nea                                | Samples v                           | vere extracted and analy                                                                                                                                                                                        | sed within recommended holding times.                                                             |  |  |  |
| Laboratory Acc              | reditation                         | The labora                          | atory analysis was condu<br>al Association of Testing                                                                                                                                                           | cted by ALS Environmental Pty Ltd (Sydney), which Authorities (NATA) accredited laboratories.     |  |  |  |
| Frequency of la             | boratory                           | The labora whether th               | atory reported an insuffici<br>le results have been repo                                                                                                                                                        | ent frequency of quality control samples to assess orted to an acceptable accuracy and precision. |  |  |  |
| Method Blank                |                                    | Method bla                          | ank concentrations were not detected above the LOR for all analytes                                                                                                                                             |                                                                                                   |  |  |  |
| Laboratory dup<br>RPDs      | licate                             | Laboratory<br>Percentag<br>RPDs are | <sup>7</sup> duplicates (LD) were conducted on anonymous samples. LD Relative<br>e Differences (RPD) was within control limits. The laboratory duplicate<br>presented in the laboratory Quality Control Report. |                                                                                                   |  |  |  |
| Laboratory cont<br>recovery | trol spike                         | Laboratory                          | / Control Spike (LCS) rec                                                                                                                                                                                       | coveries were within control limits.                                                              |  |  |  |
| Matrix spike red            | covery                             | Matrix spik<br>reported) v          | kes (MS) were conducted were within control limits.                                                                                                                                                             | on anonymous samples. All MS recoveries (where                                                    |  |  |  |
| Surrogate spike             | 9                                  | Surrogates within cont              | s were conducted on and<br>trol limits                                                                                                                                                                          | nymous Samples. All surrogate recoveries were                                                     |  |  |  |



| DATA VALIDAT                                                     | ION REP                                    | ORT                         |                                                                                                           |                  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Project<br>number:                                               | 6048880                                    | 14                          | Validation<br>by:<br>Hamish<br>Watkins                                                                    | Date: 02/05/2016 |  |  |  |
| Client:                                                          | Caltex                                     |                             | Data                                                                                                      | Date: 3/05/2016  |  |  |  |
| Site:                                                            | Kurnell                                    |                             | <b>verified</b><br><b>by:</b> Kate<br>McGrath                                                             |                  |  |  |  |
| Matrix type:                                                     | Soil                                       |                             |                                                                                                           |                  |  |  |  |
| Primary<br>samples:                                              | A005.5_<br>B007.5_<br>B035_0.              | 0.0-0.2<br>0.0-0.2<br>0-0.3 | B009.5_0.0-0.2<br>B012.5_0.0-0.2<br>B016_0.0-0.2                                                          |                  |  |  |  |
| Laboratory:                                                      | ALS (prir                                  | mary)                       |                                                                                                           |                  |  |  |  |
| Project<br>Manager:                                              | Stephen                                    | Randell                     | Lab report reference:                                                                                     | ES1607003        |  |  |  |
| QA/QC Data Ev                                                    | aluation                                   |                             |                                                                                                           |                  |  |  |  |
| Comparison of Field No<br>Observations and<br>Laboratory Results |                                            | No anoma                    | No anomalous results between field observations and analysis results were noted.                          |                  |  |  |  |
| Comparison of the and Laboratory I                               | he data<br>Results                         | No anoma                    | ous results between data input and laboratory analysis results were noted.                                |                  |  |  |  |
| Limits of reportir                                               | ng                                         | Limits of R<br>adopted gu   | mits of Reporting (LORs) were sufficiently low to enable assessment against<br>dopted guideline criteria. |                  |  |  |  |
| Intra-laboratory duplicate RPDs                                  | Intra-laboratory Not applic duplicate RPDs |                             | able as re-batch of ES16                                                                                  | 06083.           |  |  |  |
| Inter-laboratory duplicate RPDs                                  |                                            | Not applica                 | able as re-batch of ES16                                                                                  | 06083.           |  |  |  |
| Trin Sniko Boco                                                  | vorios                                     | Not applica                 | able as re-batch of ES16                                                                                  | 06083.           |  |  |  |
| Chromatogram                                                     | s                                          |                             |                                                                                                           |                  |  |  |  |
| Not applicable                                                   |                                            |                             |                                                                                                           |                  |  |  |  |
| Other                                                            |                                            |                             |                                                                                                           |                  |  |  |  |
| Comments:                                                        |                                            |                             |                                                                                                           |                  |  |  |  |
|                                                                  |                                            |                             |                                                                                                           |                  |  |  |  |
|                                                                  |                                            |                             |                                                                                                           |                  |  |  |  |
|                                                                  |                                            |                             |                                                                                                           |                  |  |  |  |



| DATA VALIDAT                 | ION REP                                         | ORT                     |                                                                                                                                                       |                                                                         |  |  |  |
|------------------------------|-------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Project<br>number:           | 6048880                                         | 4                       | <b>Validation<br/>by:</b><br>Hamish<br>Watkins                                                                                                        | Date: 02/05/2016                                                        |  |  |  |
| Client:                      | Caltex                                          |                         | Data                                                                                                                                                  | Date: 03/05/2016                                                        |  |  |  |
| Site:                        | Kurnell                                         |                         | <b>verified</b><br><b>by:</b> Kate<br>McGrath                                                                                                         |                                                                         |  |  |  |
| Matrix type:                 | Soil                                            |                         |                                                                                                                                                       |                                                                         |  |  |  |
| Primary<br>samples:          | 13 Primary<br>Samples (refer to<br>lab reports) |                         |                                                                                                                                                       |                                                                         |  |  |  |
| Laboratory:                  | ALS (prir                                       | nary)                   |                                                                                                                                                       |                                                                         |  |  |  |
| Project<br>Manager:          | Stephen                                         | Randall                 | Lab report reference:                                                                                                                                 | ES1607647                                                               |  |  |  |
| Key<br>Issues:               |                                                 | No QA/QC<br>material im | issues were identified in plication to decision-mal                                                                                                   | the field or laboratory datasets that could have a king on the project. |  |  |  |
| Field Quality As             | ssurance                                        | and Quality             | / Control                                                                                                                                             |                                                                         |  |  |  |
| Sampling persor              | nnel                                            | All samplin             | g was conducted by Kate                                                                                                                               | e Pigram on the 14,15 and 16 March 2016.                                |  |  |  |
| Sampling Metho               | dology                                          | Samples w               | ere collected directly from the hand auger or solid stem auger.                                                                                       |                                                                         |  |  |  |
| Chain of Custod              | y (COC)                                         | Chain of cu             | Chain of custody documents completed by Kate Pigram.                                                                                                  |                                                                         |  |  |  |
| Field Blank                  |                                                 | No field bla            | inks were utilised.                                                                                                                                   |                                                                         |  |  |  |
| Rinsate Blank                |                                                 | Not applica             | ıble.                                                                                                                                                 |                                                                         |  |  |  |
| Trip Blank/Spike             | •                                               | Not applica             | able.                                                                                                                                                 |                                                                         |  |  |  |
| Frequency of fie             | ld QC                                           | No inter-lal            | aboratory or intra-laboratory duplicates were analysed.                                                                                               |                                                                         |  |  |  |
| Handling and preservation    |                                                 | All samples             | s were received at the laboratory in appropriate sample containers.                                                                                   |                                                                         |  |  |  |
| Laboratory QA                | QC                                              |                         |                                                                                                                                                       |                                                                         |  |  |  |
| Tests<br>requested/repor     | ted                                             | Samples w               | vere analysed and report                                                                                                                              | ed as requested on the Chain Of Custody (COC).                          |  |  |  |
| Holding time compliance      |                                                 | Not applica             | able.                                                                                                                                                 |                                                                         |  |  |  |
| Laboratory Accr              | editation                                       | The labora is a Nation  | atory analysis was conducted by ALS Environmental Pty Ltd (Sydney), which<br>al Association of Testing Authorities (NATA) accredited laboratories.    |                                                                         |  |  |  |
| Frequency of lat             | ooratory                                        | The labora whether the  | tory reported an insufficient frequency of quality control samples to assess<br>e results have been reported to an acceptable accuracy and precision. |                                                                         |  |  |  |
| Method Blank                 | nod Blank Method bl                             |                         | ank concentrations were not detected above the LOR for all analytes                                                                                   |                                                                         |  |  |  |
| Laboratory dupli<br>RPDs     | cate                                            | Not applica             | able.                                                                                                                                                 |                                                                         |  |  |  |
| Laboratory contr<br>recovery | ol spike                                        | Not applica             | able.                                                                                                                                                 |                                                                         |  |  |  |
| Matrix spike rec             | overy                                           | Not applica             | able.                                                                                                                                                 |                                                                         |  |  |  |
| Surrogate spike recovery     |                                                 | Not applica             | able.                                                                                                                                                 |                                                                         |  |  |  |
| QA/QC Data Ev                | aluation                                        |                         |                                                                                                                                                       |                                                                         |  |  |  |



| DATA VALIDAT                                                           | ION REP                          | ORT                       |                                                                                       |                                                 |  |  |  |
|------------------------------------------------------------------------|----------------------------------|---------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|
| Project<br>number:                                                     | 6048880                          | 4                         | <b>Validation<br/>by:</b><br>Hamish<br>Watkins                                        | Date: 02/05/2016                                |  |  |  |
| Client:                                                                | Caltex                           |                           | Data                                                                                  | Date: 03/05/2016                                |  |  |  |
| Site:                                                                  | Kurnell                          |                           | <b>verified<br/>by:</b> Kate<br>McGrath                                               |                                                 |  |  |  |
| Matrix type:                                                           | Soil                             |                           |                                                                                       |                                                 |  |  |  |
| Primary<br>samples:                                                    | 13 Prima<br>Samples<br>lab repor | ry<br>(refer to<br>ts)    |                                                                                       |                                                 |  |  |  |
| Laboratory:                                                            | ALS (prir                        | mary)                     |                                                                                       |                                                 |  |  |  |
| Project<br>Manager:                                                    | Stephen                          | Randall                   | Lab report reference:                                                                 | ES1607647                                       |  |  |  |
| Comparison of Field No anoma<br>Observations and<br>Laboratory Results |                                  | No anomal                 | lous results between fiel                                                             | d observations and analysis results were noted. |  |  |  |
| Comparison of the and Laboratory I                                     | he data<br>Results               | No anomal                 | ous results between data input and laboratory analysis results were noted.            |                                                 |  |  |  |
| Limits of reportir                                                     | ng                               | Limits of R<br>adopted gu | eporting (LORs) were sufficiently low to enable assessment against uideline criteria. |                                                 |  |  |  |
| Intra-laboratory duplicate RPDs                                        |                                  | No intra-la               | boratory duplicates were                                                              | analysed.                                       |  |  |  |
| Inter-laboratory No inter-lab<br>duplicate RPDs                        |                                  | boratory duplicates were  | analysed.                                                                             |                                                 |  |  |  |
| Trip Spike Reco                                                        | veries                           | Not applica               | able.                                                                                 |                                                 |  |  |  |
| Chromatogram                                                           | s                                |                           |                                                                                       |                                                 |  |  |  |
| Not applicable                                                         |                                  |                           |                                                                                       |                                                 |  |  |  |
| Other                                                                  |                                  |                           |                                                                                       |                                                 |  |  |  |
| Comments:                                                              |                                  |                           |                                                                                       |                                                 |  |  |  |
|                                                                        |                                  |                           |                                                                                       |                                                 |  |  |  |
|                                                                        |                                  |                           |                                                                                       |                                                 |  |  |  |
|                                                                        |                                  |                           |                                                                                       |                                                 |  |  |  |



| DATA VALIDATION REPORT              |                                                                                                                                             |                                                                                                                                                                                                                                     |                                                |         |                                                |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|------------------------------------------------|--|--|--|
| Project<br>number:                  | 60488804                                                                                                                                    |                                                                                                                                                                                                                                     | <b>Validation<br/>by:</b><br>Hamish<br>Watkins |         | Date: 02/05/2016                               |  |  |  |
| Client:                             | Caltex                                                                                                                                      |                                                                                                                                                                                                                                     | Data                                           |         | Date:                                          |  |  |  |
| Site:                               | Kurnell                                                                                                                                     |                                                                                                                                                                                                                                     | verified<br>by:                                |         |                                                |  |  |  |
| Matrix type:                        | Soil                                                                                                                                        |                                                                                                                                                                                                                                     |                                                |         |                                                |  |  |  |
| Primary<br>samples:                 | B001_0.0-0.2,<br>B036_0.0-0.2,<br>B032_0.0-0.2,<br>B009.5_0.0-0.2,<br>B010.5_0.0-0.2,<br>B003.5_0.0-0.2,<br>B014_0.0-0.2,<br>A006.5_0.0-0.2 |                                                                                                                                                                                                                                     |                                                |         |                                                |  |  |  |
| Laboratory:                         | ALS (prii                                                                                                                                   | mary),                                                                                                                                                                                                                              |                                                |         |                                                |  |  |  |
| Project<br>Manager:                 | Stephen                                                                                                                                     | Randall                                                                                                                                                                                                                             | Lab report refer                               | ence:   | ES1608579                                      |  |  |  |
| Key<br>Issues:                      |                                                                                                                                             | No QA/QC issues were identified in the field or laboratory datasets that could have a material implication to decision-making on the project.                                                                                       |                                                |         |                                                |  |  |  |
| Field Quality A                     | Field Quality Assurance and Quality Control                                                                                                 |                                                                                                                                                                                                                                     |                                                |         |                                                |  |  |  |
| Sampling personnel                  |                                                                                                                                             | All sampling was conducted by Kate Pigram on the 14,15 and 16 March 2016.                                                                                                                                                           |                                                |         |                                                |  |  |  |
| Sampling Methodology                |                                                                                                                                             | Samples were collected directly from the hand auger or solid stem auger.                                                                                                                                                            |                                                |         |                                                |  |  |  |
| Chain of Custody (COC)              |                                                                                                                                             | Chain of custody documents completed by Kate Pigram on original order. This additional analysis was requested by Scott Robinson.                                                                                                    |                                                |         |                                                |  |  |  |
| Field Blank                         |                                                                                                                                             | No field blanks were utilised.                                                                                                                                                                                                      |                                                |         |                                                |  |  |  |
| Rinsate Blank                       |                                                                                                                                             | No rinsate blanks were analysed.                                                                                                                                                                                                    |                                                |         |                                                |  |  |  |
| Trip Blank/Spike                    |                                                                                                                                             | No trip spikes were taken.                                                                                                                                                                                                          |                                                |         |                                                |  |  |  |
| Frequency of field QC               |                                                                                                                                             | No inter-laboratory or intra-laboratory duplicates were analysed.                                                                                                                                                                   |                                                |         |                                                |  |  |  |
| Handling and<br>preservation        |                                                                                                                                             | Samples were received preserved and chilled at the laboratory. All samples were received at the laboratory in appropriate sample containers.                                                                                        |                                                |         |                                                |  |  |  |
| Laboratory QA/QC                    |                                                                                                                                             |                                                                                                                                                                                                                                     |                                                |         |                                                |  |  |  |
| Tests Samples<br>requested/reported |                                                                                                                                             |                                                                                                                                                                                                                                     | vere analysed and                              | reporte | ed as requested on the Chain Of Custody (COC). |  |  |  |
| Holding time<br>compliance          |                                                                                                                                             | Samples were extracted and analysed within recommended holding times.                                                                                                                                                               |                                                |         |                                                |  |  |  |
| Laboratory Accreditation            |                                                                                                                                             | The laboratory analysis was conducted by ALS Environmental Pty Ltd (Sydney), which is a National Association of Testing Authorities (NATA) accredited laboratories.                                                                 |                                                |         |                                                |  |  |  |
| Frequency of laboratory<br>QC       |                                                                                                                                             | The laboratory reported an insufficient frequency of quality control samples to assess whether the results have been reported to an acceptable accuracy and precision.                                                              |                                                |         |                                                |  |  |  |
| Method Blank                        |                                                                                                                                             | Method blank concentrations were not detected above the LOR for all analytes                                                                                                                                                        |                                                |         |                                                |  |  |  |
| Laboratory duplicate<br>RPDs        |                                                                                                                                             | Laboratory duplicates (LD) were conducted on anonymous and AECOM samples. LD Relative Percentage Differences (RPD) was within control limits. The laboratory duplicate RPDs are presented in the laboratory Quality Control Report. |                                                |         |                                                |  |  |  |
| Laboratory control spike recovery   |                                                                                                                                             | Laboratory Control Spike (LCS) recoveries were within control limits.                                                                                                                                                               |                                                |         |                                                |  |  |  |



| DATA VALIDATION REPORT                                        |                                                                                                                                             |                                                                                                                                  |                                                |                         |  |  |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|--|--|--|
| Project<br>number:                                            | 60488804                                                                                                                                    |                                                                                                                                  | <b>Validation<br/>by:</b><br>Hamish<br>Watkins | <b>Date:</b> 02/05/2016 |  |  |  |
| Client:                                                       | Caltex                                                                                                                                      |                                                                                                                                  | Data                                           | Date:                   |  |  |  |
| Site:                                                         | Kurnell                                                                                                                                     |                                                                                                                                  | verified<br>by:                                |                         |  |  |  |
| Matrix type:                                                  | Soil                                                                                                                                        |                                                                                                                                  | -                                              |                         |  |  |  |
| Primary<br>samples:                                           | B001_0.0-0.2,<br>B036_0.0-0.2,<br>B032_0.0-0.2,<br>B009.5_0.0-0.2,<br>B010.5_0.0-0.2,<br>B003.5_0.0-0.2,<br>B014_0.0-0.2,<br>A006.5_0.0-0.2 |                                                                                                                                  |                                                |                         |  |  |  |
| Project                                                       | ALS (phi                                                                                                                                    | Bandall                                                                                                                          | l ab report reference                          | ES1608570               |  |  |  |
| Manager:                                                      | Stephen                                                                                                                                     | Nanuali                                                                                                                          | Lab report reference                           | . 13100373              |  |  |  |
| Matrix spike recovery                                         |                                                                                                                                             | Matrix spikes (MS) were conducted on anonymous and AECOM samples. All MS recoveries (where reported) were within control limits. |                                                |                         |  |  |  |
| Surrogate spike<br>recovery                                   |                                                                                                                                             | Surrogates were conducted on anonymous Samples. All surrogate recoveries were within control limits                              |                                                |                         |  |  |  |
| QA/QC Data Evaluation                                         |                                                                                                                                             |                                                                                                                                  |                                                |                         |  |  |  |
| Comparison of Field<br>Observations and<br>Laboratory Results |                                                                                                                                             | No anomalous results between field observations and analysis results were noted.                                                 |                                                |                         |  |  |  |
| Comparison of the data and Laboratory Results                 |                                                                                                                                             | No anomalous results between data input and laboratory analysis results were noted.                                              |                                                |                         |  |  |  |
| Limits of reporting                                           |                                                                                                                                             | Limits of Reporting (LORs) were sufficiently low to enable assessment against adopted guideline criteria.                        |                                                |                         |  |  |  |
| Intra-laboratory<br>duplicate RPDs                            |                                                                                                                                             | No intra-laboratory duplicates were analysed.                                                                                    |                                                |                         |  |  |  |
| Inter-laboratory<br>duplicate RPDs                            |                                                                                                                                             | No inter-laboratory duplicates were analysed.                                                                                    |                                                |                         |  |  |  |
| Trip Spike Recoveries                                         |                                                                                                                                             | No trip spike recoveries were analysed.                                                                                          |                                                |                         |  |  |  |
| Chromatograms                                                 |                                                                                                                                             |                                                                                                                                  |                                                |                         |  |  |  |
| Othor                                                         |                                                                                                                                             |                                                                                                                                  |                                                |                         |  |  |  |
| Commente                                                      |                                                                                                                                             |                                                                                                                                  |                                                |                         |  |  |  |
| Commente.                                                     |                                                                                                                                             |                                                                                                                                  |                                                |                         |  |  |  |